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1 Executive Summary

In this deliverable we describe the initial automatic speech recognition (ASR) systems that
we created for the ELITR speech translation system. We have investigated different types of
models: hybrid HMM /ANN models, encoder-decoder with attention based sequence-to-sequence
(S2S) and self-attention based S2S models. We have created the models in such a way as to
meet the primary design criteria of the ASR systems of the ELITR speech translation system:
stream processing, real-time processing and low-latency processing. For the inital systems we
have produced traditional HMM/ANN recognition systems, and a proof-of-concept S2S model
for English that advances the state-of-the-art.

We made the initial ASR systems available for the languages Czech, English, German,
French, Spanish and Italian.

As a next step we will advance the S2S workers to a level of maturity that they can be
deployed in the ELITR speech translation system.
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2 Introduction

This deliverable presents the initial automatic speech recognition (ASR) systems developed
for ELITR’s speech translation system. In order for the ASR systems to work in a machine
interpretation set-up, they need to fulfill the following criteria:

Streaming Mode: The systems have to work on streaming ASR input. That means that the
ASR data is not processed in batch mode; instead a continuous stream of audio needs to
be continuously recognized.

Real-time or faster: The systems have to process the incoming audio in real-time or faster
in order to be able to keep up with the incoming speech.

Low-latency: The systems have to output their results in as low a latency as possible, in
order for the audience to be able to follow the speeches in sync with the speakers, their
presentations, and the results of the automatic interpretation.

The creation of the initial ASR systems for ELITR came in a period of dramatic changes
when it comes to ASR systems in general, and low-latency, real-time ASR systems specifically.

While at the on-set of the project the state-of-the-art consisted of HMM based speech
recognition systems that use feed-forward neural networks for the estimation of the HMMs’
emission probabilities, during the first year of the project advances in sequence-to-sequence
(seq2seq) speech recognition technology led to better performance of these models in offline
settings. Therefore, we started to create seq2seq systems that not only perform better in offline
settings, but also fulfill the specifications above in order for the systems to work in the ELITR
setting.

While, in general, leading to drastically lower word error rates, seq2seq systems also have
some disadvantages:

Data needs: Current seq2seq systems tend to need more data in order to surpass HMM based
systems. i.e., when trained on large amounts of data seq2seq systems clearly outperform
HMM systems, but when trained on smaller amounts of data, HMM systems might be
able to outperform seq2seq systems.

End-to-end data Seq2seq systems are exclusively trained on transcribed audio data. For
HMM based systems this is only the case for the acoustic model, while the language
model is trained on text only. This is an advantage because a) text data is often available
in larger amounts than transcribed audio data, and b) domain specific text is often more
readily available than domain specific transcribed audio data.

Vocabulary and language model adaptation Our seq2seq models are open vocabulary mod-
els. Therefore, manually adapting the vocabulary to account for domain specific terms is
not easily doable (at the moment). Also, as the seq2seq models do not have an explicit
language model, adapting the systems on text only is not possible (at the moment).
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3 Types of systems investigated
3.1 Hybrid HMM/ANN ASR with the JRTk

The conventional approach to statistical automatic speech recognition (ASR) uses a Bayes
classifier and Hidden Markov Model (HMM) to decouple the modeling posterior P(W | X),
i.e. the probability of a textual transcript W given acoustic feature X, into two independent
probabilities P(X | W) and P(W). Then, these probabilities are modeled separately by an
acoustic model and a language model in training and combined within a Viterbi beam search
for inference. The recent advances of artificial neural networks (ANN) in both acoustic modeling
and language modeling have made the hybrid HMM/ANN approach dominant in many types
of ASR applications.

We have used the Janus Recognition Toolkit (JRTk) (Finke et al, 1997) for the development
of HMM/ANN ASR systems for the initial phase of the ELITR project. JRTk includes the IBIS
dynamic decoder (Soltau et al), 2001)), which allows inference to run in real-time which is the key
component to build low-latency and streaming ASR systems. The adoption of a HMM/ANN
ASR is very useful for speech translation tasks from low-resource languages as the recognition
accuracy can be improved via the adaptation of both the acoustic and language models on small
amounts of in-domain data.

For each supported language (see Section @), we collected a set of speech data with available
transcripts for training the acoustic model and text data for training the language model.
We then built individual ASR systems for different input languages in the ELITR multilingual
speech translation system. In the setup, the acoustic models are implemented using feed forward
neural networks (FFNN) with 6 layers of 1600 units (or 1024 units for the languages with smaller
amounts of training data) so as to meet the performance and speed requirements. For language
modeling, we trained and used 4-gram language models in all the systems.

3.2 End-to-end Sequence-to-sequence ASR

Attention-based sequence-to-sequence (S2S) models, which use a neural network architecture to
approximate the direct mapping from the acoustic signal to the textual transcript, have become
a very efficient approach for building high performance speech recognition systems, as in batch
processing on GPUs they have a very low real-time factor while at the same time having a
significantly lower word error rate Chan et al. (2016); Bahdanau et al! (2016). The advantage
of the S2S approach lies in its simplification of training an entire speech recognition system,
thereby hiding the awareness of complicated components as in the HMM-based systems. A
typical S2S network architecture has three basic components:

Encoder The encoder is analogous to a conventional acoustic model, which takes the input
features and maps them to a higher-level feature representation.

Decoder Given the encoder’s output the decoder estimates a distribution over output tokens.

Attention The time-alignment between the encoder and the decoder is handled by the atten-
tion mechanism.

We have investigated how to build such an S2S system for the ASR part of a speech transla-
tion system. As S2S models require typically a large amount of training data for their efficiency,
we started with publicly available speech data sets and focused on English. The initial research
has been published in Nguyen et al| (2020b) in which we have proposed a setup for building
high-performance S2S systems with two different architectures: a) an LSTM network in both
the encoder and the decoder b) a model that uses self-attention in all components. In the
same study, we have shown that on the Switchboard and Fisher telephone conversation bench-
marks, our proposed S2S ASR systems outperform the best reported HMM/ANN ASR in the
offline condition in two training settings: 300 and 2000 hours of speech. We also provided a
different S2S ASR system trained on a non-native speech dataset to the ELITR submission on
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the non-native speech translation task of IWSLT 2020 Ansari et al] (2020). The results from
the submission have potentially shown that the S2S systems perform very well in recognizing

non-native speech.

While the S2S models have been shown to outperform other approaches on standard speech
recognition tasks in an offline setup, they face several challenges when having to work in online
mode (i.e., when the complete audio data is not available before processing ). For the deployment
of the proposed S2S ASR model in a run-on and streaming setting our analysis in Nguyen
et all (2020a) shows that the attention mechanism, the encoder component and the standard
beam-search inference encounter latency issues . To mitigate these problems, we introduced an
additional loss function controlling the uncertainty of the attention mechanism, a modified beam
search identifying partial, stable hypotheses, ways of working with BLSTMs in the encoder,
and the use of chunked BLSTMs. In the experiments with telephone communication speech,
we showed that with a delay of 1.5 seconds in all output elements, our proposed streaming
recognizer can achieve the ideal performance of an offline system with the same configuration.

3.3 Enhanced ASR with phoneme-level intermediate step

Another requirement on the ASR is to provide robust performance in various situations. Besides
of the bad acoustics or low-quality hardware, the pronunciation of a speaker can have significant
impact on resulting quality of the transcripts. We therefore started to investigate another
approach targeted at improving robustness to phonetic variations resulting from accents and
dialects.

Motivated by recent work by Salesky et al, (2019) and Hrinchuk et al) (2019), we explored a
robust ASR pipeline consisting of two components — an acoustic model recognizing phonemes,
and a phoneme-to-grapheme translation model. We decided to use phonemes as the intermediate
representation between the acoustic and the translation model because we believe that the
conventional grapheme representation is too constrained with complicated rules of mapping
speech to a transcript. This issue becomes immense when dealing with dialects and non-native
speakers. In such case, the ASR may guess grapheme (standard) word that is “far” from
the pronounced word. The acoustic model of the proposed system should output phoneme
transcript matching pronunciation and the following phoneme-to-grapheme model should output
a corrected transcript based on the context.

First, we investigated how well the proposed pipeline performs when trained on clean data.
Notably, we trained the phoneme-to-grapheme translation model on a non-speech text corpus
artificially translated to phonemes. The trained models did not outperform the baseline. But
to our surprise, its performance is only slightly worse.

To support robustness, we further investigated several training and fine-tuning schemes using
transfer from related task (SLT) and “corrupted” data. We gathered the “corrupted” acoustic
data by inferring speech corpora using an ensemble of acoustic models for each language (English
and Czech). The obtained “corrupted” transcripts where then paired with golden transcripts
and used in the training of the translation model.

Further, we initialized phoneme-to-grapheme translation model with weights from SLT task
(i.e., the encoder with weights from Cs-to-En SLT and the decoder with En-to-Cs SLT for Czech
ASR, and vice versa for English ASR).

We made two key observations:

1. using “corrupted” data for training helps to reduce the WER,

2. transfer learning from SLT further promotes the robustness of the ASR.

Further details can be found in Polédk (2020). We also participated with this system (see
Polak et al. (2020), reproduced here in Appendix [A]) in the Non-Native Speech Translation Task
for IWSLT 2020 (Ansari et all, 2020).
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3.4 Domain adaptation of Czech speech recognition

One of the challenges of automatic speech recognition is adaptation of the system trained on a
large amount of general acoustic data to a specific target domain. As part of our research, we
have developed a scalable domain adaptation pipeline for Czech, aiming to reduce the gap in
performance between various domains. Our adaptation techniques mainly focus on the language
model and lexicon adaptation. We conduct experiments described in this section with the Kaldi
toolkit Povey et al| (2011).

Test sets To test our adaptation techniques, we have prepared five distinct test sets from
various domains. These include Czech parliament hearings (PS), Euro parliament debates
(EP), presentations about computational linguistics (CS), Conference of Supreme Audit Office
in Prague (SAO), and talks from Czech broadcast station Cesky Rozhlas (CRO). We include

details of our test sets in Table m

Test set EP CL CRO PS SAO
Total hours 2:45:25  1:46:01 2:06:41 2:44:58 0:41:08
Total words 17051 12644 18363 20592 3759
Unique words 4381 2746 4362 3847 1375
Unique speakers 4 1 8 53 1
Total distinct talks 3 2 6 1 1

Table 1: Test set statistics

Domain adaptation algorithm We first identify the target domain and extract as many ex-
isting text materials as possible. These typically include slides of a particular presentation,
abstract of a relevant paper or news articles, and keywords relevant to the target domain.
Using the obtained set of sentences, we embed them into a latent space using the sentence
embedding technique described in Arora et al, (2016). As our main corpus, we use SumeCzech
(Straka et al), 2018). This corpus comprises approximately one million Czech articles collected
from various online news sites such as “Novinky.cz”, “Denik.cz” or “Idnes.cz”. Each article is
divided into title, abstract and full-text. We divide each abstract and title into sentences, and
for each of them remember the mapping to the full-text article to which they belong. We then
embed these sentences obtained from abstracts and titles using the same sentence embedding
algorithm. For each of our collected domain sentence, we compute cosine similarity with all
the abstracts and title sentences from SumeCzech and select n (this is a hyper parameter of
our algorithm that can be specified by the user) most similar ones. Finally, we map these most
similar titles and abstract sentences back to their full-text articles.

The second part of our algorithm uses two existing applications developed by the Czech National
Corpus. These are KonTextﬂ and KWordsd. We take the text collection obtained from the first
part of the algorithm and search for domain-specific words inside it by KWords application.
It compares the relative frequencies of each word in the input text against frequencies in the
selected backend corpus. We then compute the x? and log-likelihood statistical tests on the
frequency differences, and we sort the words in descending order from the most domain-specific
to the least domain-specific. This way, we extract the m (this is again hyperparameter of our
algorithm) most significant words from our domain text corpus. We then query each of these
words into the KonText application. It searches a large text corpus and outputs all available
contexts for a particular word. We extract & (this parameter is usually set to 100-200) context
sentences for each query word and include all collected contexts into our domain texts from the
first part of the algorithm.

Finally, we train a domain-specific n-gram language model and interpolate it with a larger and

https://kontext .korpus.cz/
’https://kwords.korpus.cz/
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more general n-gram model. The domain words also extend the model lexicon, and we recompile
the Kaldi decoding graph using this new interpolated language model and its lexicon.

Results In Table E we present the results of all evaluated systems on all our test sets. We
compare our models against the Google Cloud Czech ASRH and against the UWebASR (Svec
et al), 2018) provided by the University of West Bohemia.? As our systems, we first present the
baseline model, which uses the general language model trained on three million news sentences.
We adapt the N-gram adaptation model by the algorithm described in the previous section to
the domain of each of our test sets (resulting in 5 distinct models). We also extend the model
lexicon by the domain words. Lastly, we extend the N-gram adaptation model by recurrent
neural network lattice re-scoring. The architecture of the recurrent language model is described
in Xu et al, (2018). The RNN language model was also trained using the interpolation of the
domain-specific and general text data.

Model type EP CL CRO PS SAO
Google Cloud 9.562 6.371 14.729 9.646 3.383
UWB 14.133  7.447 9.425 8.556 4.334
Baseline 6.606 3.933 6.737 9.771 3.591

N-gram adaptation 6.780  3.140 6.587 9.389 1.519
RNNLM adaptation  5.972  3.138 6.475 9.389 1.493

Table 2: Word error rates of all considered systems and test sets.

From Table ; we see that the domain adaptation can help improve model performance across
a diverse set of domains. In the future, we plan to experiment with acoustic adaptation, where
we could adapt the neural network acoustic model to the voice of a specific speaker or to a
particular acoustic condition.

Shttps://cloud.google.com/speech-to-text
“https://lindat.mff.cuni.cz/services /uwebasr/
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4 Language Coverage

Using the technologies above we were able to cover the languages: Czech, English, German,
French, Spanish and Italian.

Table B gives an overview for which languages which types of systems are available at this
point and the total amount of training data used for creating the workers. The training data
used is generally a mixture of data from the European Parliament and Broadcast News. For
English, additional data from the Technology, Entertainment, Design (TED) conferences and
from telephone conversations (Switchboard and Fisher data) was available.

Language # Training Data Types of Workers

Czech 444 HMM/ANN
English 1500 HMM/ANN, enc/dec
German 450 HMM/ANN
French 268 HMM/ANN
Spanish 272 HMM/ANN
Italian 178 HMM/ANN

Table 3: Languages serviced by ASR workers, the amount of training data they were trained
on in hours and the type of model used: hybrid HMM/ANN (HMM/ANN) model, S2S encode-
decoder with attention model (enc/dec)

5 Conclusion

In this deliverable we have described the initial ASR system developed for the ELITR speech
translation system. We have investigated a variety of different modeling techniques, such as
hybrid HMM /ANN systems, encoder-decoder with attention based sequence-to-sequence models
and self-attention models. We also investigated domain adaptation techniques for hybrid models
and tested them on Czech.

Using these different models, we were able to cover the languages English, German, French,
Spanish, and Italian and provide suitable HMM/ANN workers for the ELITR speech translation
system. The next step will now be to continue the work on sequence-to-sequence models for
which we have shown that we can deploy the in streaming mode as required for ELTIR, and to
produce workers that are mature enough to be deployed in the ELITR framework.
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Abstract

In this paper, we present our submission to
the Non-Native Speech Translation Task for
IWSLT 2020. Our main contribution is a pro-
posed speech recognition pipeline that con-
sists of an acoustic model and a phoneme-to-
grapheme model. As an intermediate repre-
sentation, we utilize phonemes. We demon-
strate that the proposed pipeline surpasses
commercially used automatic speech recogni-
tion (ASR) and submit it into the ASR track.
We complement this ASR with off-the-shelf
MT systems to take part also in the speech
translation track.

1 Introduction

This paper describes our submission to Non-Native
Speech Translation Task in IWSLT 2020 (Ansari
et al., 2020). We participate in two sub-tracks:
offline speech recognition and offline speech trans-
lation from English into Czech and German.

We focus on the speech recognition, proposing
a robust pipeline consisting of two components —
an acoustic model recognizing phonemes, and a
phoneme-to-grapheme translation model, see Fig-
ure 1. We decided to use phonemes as the interme-
diate representation between the acoustic and the
translation model because we believe that conven-
tional grapheme representation is too constrained
with complicated rules of mapping speech to a tran-
script. This issue becomes immense when dealing
with dialects and non-native speakers.

Both models used in our pipeline are end-to-
end deep neural networks, Jasper (Li et al., 2019)
for the acoustic model and Transformer (Vaswani
et al., 2017) for the phoneme-to-grapheme transla-
tion model.

For punctuating, truecasing, segmenting and
translation into Czech and German, we use off-
the-shelf systems provided by ELITR project.

191

Acoustic Model

MFCC:
l”l"' : Jasper

t

sound (optional)

Phoneme-LM
Rescoring
KenLM

phoneme:

Phoneme-to-Grapheme

Transcript
Transformer P

Figure 1: The architecture of proposed model.

The paper is organized as follows: Section 2
reviews related work. In Sections 3 and 4 we de-
scribe models for our speech recognition pipeline
and their training. In Section 5, we describe the
punctuator, truecasor and segmenter, and machine
translation into Czech and German in Section 6.
We summarize our submissions in Section 7 and
conclude in Section 8.

2 Related Work

This section reviews the related work.

2.1 Phonemes and Acoustic Models

Phones and phonemes are well-established mod-
elling units in ASR. They have been used since
the beginning of the technology in 1950s (Juang
and Rabiner, 2005), for an empirical comparison of
different linguistic units for sound representation,
see Riley and Ljolje (1992).

An important work popularizing neural networks
in ASR to phonemes is Waibel et al. (1989). This
work proposes using a time-delayed neural network
(TDNN) to model acoustic-phonetic features and
the temporal relationship between them. The au-
thors demonstrate that the proposed TDNN can
learn shift-invariant internal abstraction of speech
and use it to make a robust final decision.

Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 191-199
July 9-10, 2020. (©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17
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Salesky et al. (2019) suggest using of phoneme-
based ASR in speech translation. Their end-to-end
speech translation pipeline first obtains phoneme
alignment using the deep neural network hidden
Markov models (DNN-HMM) system and then av-
erages feature vectors with the same phoneme for
consecutive frames. Phonemes outputted by DNN-
HMM then serve as input features for speech trans-
lation.

2.2 Phoneme-to-Grapheme Models

In most past studies that included a separate
phoneme-to-grapheme (P2G) translation compo-
nent into the ASR, the phoneme representation was
used only for out-of-vocabulary (OOV) words, see,
e.g. Decadt et al. (2001); Horndasch et al. (2006);
Basson and Davel (2013).

Decadt et al. (2001) apply phoneme-to-
grapheme to enhance the readability of OOV out-
put in Dutch speech recognition. In their setup,
the ASR outputs standard (orthographic) text for
known words. For OOVs, phonemes are out-
putted. Because the phonemes are unreadable for
most users, the authors translate phonemes using
memory-based learning. The word error rate of this
improved setup of Dutch ASR was actually higher
than the baseline, on the other hand, the output
was better readable for an untrained person. They
report that 41 % of words were transcribed with
at most one error, and 62 % have only two errors.
Furthermore, most of the incorrectly transcribed
words do not exist in Dutch.

Horndasch et al. (2006) introduce a data-driven
approach called MASSIVE. Their main objective
is to find appropriate orthographic representations
for dictated Internet search queries. Their sys-
tem iteratively refines sequences of symbol pairs
in different alphabets. In the first step, they find
the best phoneme-grapheme alignment using the
expectation-maximization algorithm. In the second
step, they cluster neighbouring symbols together
to account for insertions. Finally, n-gram proba-
bilities of symbol pairs are learned. During the
inference, the input string is split into individual
symbols. All possible symbol pairs are generated
for each symbol, and the best sequences are se-
lected in a beam search.

2.3 Error Correction in ASR

Hrinchuk et al. (2019) deal with the correction of
errors in ASR by introducing Transformer post-
processing. The authors first train an ensemble of

10 ASR models. Using these models, they collect
“ASR corrupted” data. Subsequently, they train a
Transformer on this data where the “ASR corrupted”
text serves as the source and the original true tran-
scripts as the target. In their best setup, they utilize
transfer learning. They use BERT (Devlin et al.,
2018), a masked language model consisting only
of Transformer encoder, and initialize both encoder
and decoder of their Transformer correction model
with BERT’s weights.

2.4 Online ASR Services

We compare our work with Google Cloud Speech-
to-Text API' and Microsoft Azure Speech to Text.?
Both of these services provide publicly available
APIs for transcribing audio recordings.

3 Neural ASR with Phoneme-Level
Intermediate Step

Our main idea is to couple an end-to-end acous-
tic model with a specialized “translation” model,
which translates phonemes to graphemes and cor-
rects the ASR errors.

The motivation for the translation step is that the
translation model can exploit larger context than a
basic convolutional acoustic model. Furthermore,
we can utilize considerably larger non-speech cor-
pora to train this part of the pipeline.

3.1 Acoustic Model

For our acoustic model, we use the Jasper (Li et al.,
2019) convolutional neural architecture in the vari-
ant of Jasper DR 10x5 variant, as described in the
original paper. It is implemented within the NeMo
library (Kuchaiev et al., 2019).

For training, we use approximatelly 1 000 hours
of speech data from LibriSpeech (Panayotov et al.,
2015) and 1000 hours of Common Voice?. Be-
cause we want the model to produce phonemes and
not graphemes, which are available in the train-
ing corpora, we converted the transcript to IPA
phonemes using the phonemizer? tool.

To speed-up the training process, we initialize
our English sound-to-phoneme Jasper model with

'nttps://cloud.google.com/
speech-to-text

*https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

*https://voice.mozilla.org/en

*https://github.com/bootphon/
phonemizer
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Type  Corpus | Adapt. Full training
dev LS Clean | 46.07 3.84
Ccv 54.69 11.86
LS Clean - 4.18/4.48t1/3.58%
test LS Other - 11.48/11.671/8.57%
CV - 10.21/10.47% / 6.46%

Table 1: Results in % of Phoneme Word Error Rate
(PWER) using greedy decoding (no mark), beam
search (t) and beam search with language model ().
The language model is trained on phonemized ASR
training data. Note, PWER is not directly comparable
to WER. “LS” LibriSpeech. “CV”” Common Voice.

the available checkpoint of the standard sound-to-
grapheme model.’. This seed model was trained on
LibriSpeech, Mozilla Common Voice, WSJ, Fisher,
and Switchboard corpora, which is beyond the set
of corpora allowed for a constrained submission.
The model yields word error rate (WER) of 3.69
% on LibriSpeech test-clean, and 10.49 % on test-
other using greedy decoding.

For a smooth transition from the Latin alpha-
bet to IPA, we start our training with an adapta-
tion phase of 2,000 training steps. As the model’s
memory footprint is smaller during this phase, we
increase the batch size to 64 (global batch size is
640). One thousand steps are warm-up; the maxi-
mal learning rate is 0.004.

The full training takes ten epochs. The model
memory requirements increase, therefore we re-
duce the batch size to 16 (global batch size is 160).
We also reduce the learning rate to 0.001.

Optionally, we include a phoneme-level lan-
guage model, which re-scores the output of the
acoustic model before the phoneme-to-grapheme
translation, to achieve higher quality. Setups that
use this component are further in this paper marked
with “_Im”.

Results of training after the Adaptation phase
(the “Adaptation” column) and the Full training are
in Table 1. Note that these scores are calculated
on the reference transcript converted to phonemes
using phonemizer. Token ambiguities thus change,
and these scores are not comparable to standard
grapheme WER.

The training is executed on 10 NVIDIA GTX
1080 Ti GPUs with 11 GB VRAM.

*https://ngc.nvidia.com/catalog/
models/nvidia:multidataset_jasperl0x5dr

4 Phoneme-to-Grapheme Model

We seek a model for translating transcripts written
in phonemes into graphemes in the same language.
Unlike the most studies reviewed in Section 2, we
propose to use Transformer (Vaswani et al., 2017)
architecture for phoneme-to-grapheme translation.
We believe that Transformer is the best option for
these tasks. Transformer has shown its potential in
many NLP tasks. Most importantly, we consider
its ability to learn the structure of a sentence, see
e.g. Pham et al. (2019).

4.1 Text Encoding Considerations

We use Byte Pair Encoding (BPE) (Sennrich et al.,
2016) for text encoding in our experiments. We
use the implementation in YouTokenToMe® library.
It is fast and offers BPE-dropout (Provilkov et al.,
2019) regularization technique.

First, we decided to use separate vocabularies for
source and target sentences, because the source and
target representations, IPA phonemes and English
graphemes, have no substantial overlap.

There has been a quite intensive discussion
about vocabulary size in neural machine transla-
tion (NMT) (Denkowski and Neubig, 2017; Gupta
etal., 2019; Ding et al., 2019). All works agree that
for low-resource translation tasks, it is better to ap-
ply smaller vocabulary sizes. For a high-resource
task, it is convenient to use larger vocabulary. Our
task, translation of phonemes into graphemes in
the same language, differs from the previous works.
Hence, we decided to experiment with vocabulary
sizes. We also want to know whether we should
train the sub-word units for source on clean data
(phonemes without errors), or we should introduce
ASR-like errors to these data.

We design the experiment as follows: we test
character-level encoding and BPE vocabulary sizes
of 128,512, 2000, 8 000 and 32 000. Further, we
test a clean data configuration, “corrupted” data
(we collect transcripts from an ensemble of 10 ASR
systems) and a “mixed” data — combination of the
two previous.

Because of the data scarcity, we use Transformer
Base configuration. We alter maximum sequence
length to 1024 because for character-level, 128, and
512 BPE configurations, many sentences do not fit
into the model. We train all models for 70 000 steps
on one GPU using the same batch size for all con-
figurations: 12 000 tokens. We set the learning rate

®https://github.com/VKCOM/YouTokenToMe

Page 14 of 20




European Live Translator
D2.1: Report 1 on Initial ASR Systems

y\’\:‘i

to 0.04. As training data, we use “corrupted” ASR
transcripts paired with true transcripts. We col-
lect the data from an ensemble of 10 ASR models,
yielding approximately 7 million sentence pairs.
For the collection of ASR corrupted data, we used
LibriSpeech and Common Voice datasets.

«clean
+corrupted

- -=-mixed
5.8

i

5.

WER (%)

5.

5.2

‘character 128 512 2k 8k 32k
Encoding size

Figure 2: Results in % of word error rate on the Com-
mon Voice test set.

« clean
54 ~—corrupted
. -=-mixed
®©5.2
& A
) N —
= >
4.8 ~
1.6
character 128 512 2k 8k 32k

Encoding size

Figure 3: Results in % of word error rate on the Lib-
riSpeech test clean.

« clean
——corrupted
-=-mixed

2
o

_ WER (%) _
IS

ot

: Icharactcr 128 512 2k 8k 32k
Encoding size

Figure 4: Results in % of word error rate on the Lib-
riSpeech test other.

Graphical comparison is in Figures 2 to 4.

BPE size Character-level encoding seems to be
the worst or second-worst possible representation.
For the Common Voice test set, it scores almost one
percentage point of WER more compared to the
best result (5.53 vs 4.55). Also, all other encodings
performed almost half a percentage point better.

For both LibriSpeech test sets, it performed a bit
better than BPE 128.

Generally, the results suggest a the larger the
vocabulary, the lower WER. Among the different
BPE sizes, we can recognize the 32 000 vocabulary
size has the best results systematically on all test
sets.

Finally, we consider the following: a model can
better learn from larger vocabulary sizes. First, a
model does not have to learn low-level orthography
extensively. Rather than memorizing characters (or
other smaller units), it can focus on the whole sen-
tence and how individual words interact. Second, a
larger model can detect errors because of anomalies
in the input encoding. Larger vocabularies produce
a shorter representation. Corrupted word is more
likely to be broken down to smaller pieces. When
a model detects such a situation, it can, for exam-
ple, decide the right target word based on context,
rather than the suspicious word. Such anomaly will
most likely not occur in the text encoded with small
BPE.

Source of BPE training data For Common
Voice, we observe some variation in performance.
Best seems to be the “mixed” configuration. Some-
what worse is “corrupted” and the worst is “clean”
version. In this case, we think the “mixed” is best
as it has frequent enough “corrupted” words. This
enables a model to learn to translate these corrupted
words into the correct ones. Also, it knows enough
other words, so it can adequately work with correct
phonemes.

For other test sets, we observe almost no differ-
ences. Only “corrupted” configuration has slightly
worse performance.

We conclude that the source of training data for
BPE has almost no impact on the final result.

4.2 Baseline Phoneme-to-Grapheme Model
(“asr” Configuration)

We decided to use Transformer Big configuration
(as opposed to the initial experiment with BPE vo-
cabularies). As we concluded in the previous part,
we select BPE vocabulary size of 32 000, and the
BPE encoding is trained on “clean” phonemized
English part of Czeng 1.7 (Bojar et al., 2016) cor-
pus.

First, we train a randomly initialized Trans-
former model. The source of the “translation” is
the phonemized English Czeng and the target is the
original English.
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We use six 16 GB GPUs for the training. We
set the batch size to 6 000 tokens, learning rate to
0.02, warm-up steps to 16 000 and total steps to
600 000. We manually abort the training after the
convergence is reached (140 000 steps in our case).

4.3 Transfer from SLT (‘““asr_slt”
Configuration)

In standard NMT, the source text usually does not
suffer from so many errors as in our setup. We
address this “correction” need by training on artifi-
cially corrupted source side.

We initialize the Transformer encoder from our
in-house speech translation model trained from En-
glish phonemes to Czech graphemes (described in
Polédk (2020)) and the decoder from a model for
the opposite direction. Both of these initial models
were trained on CzEng, with one side converted to
phonemes using phonemizer.

These pre-trained parts of the model, the encoder
and decoder need joint training to learn to operate
with each other. We employ this training also to
inject the capacity of correcting ASR output.

Specifically, we apply the jack-knife scheme to
our ASR training data (LibriSpeech and Common
Voice), training ten different ASR models, always
leaving one-tenth of the training data aside. This
one-tenth is recognized with the model, leading
to the full speech corpus equipped not only with
golden transcripts but also with ASR outputs. We
call this an “ASR-corrupted” corpus.

Based on our experience from the experiment
with BPE vocabularies, where the model easily
over-fit to the sentences from ASR transcripts
from speech corpora, we mix the corrupted and
clean data with a 1:1 ratio. This is different from
Hrinchuk et al. (2019) who use only the ASR-
corrupted data to train. We then train the complete
Transformer model from English phonemes to En-
glish graphemes with the same hyper-parameters
as the baseline.

4.4 Transfer from BERT (‘““asr_bert”
Configuration)

Finally, we use the pre-trained BERT (Devlin et al.,
2018). Unlike Hrinchuk et al. (2019), we do not ini-
tialize both the encoder and decoder with the BERT.
We initialize the encoder from the English-to-
Czech speech translation model (as in Section 4.3)
because we need the model to process phonemes,
not graphemes on the source side. The decoder

is initialized from the BERT *“large” to match the
dimension of the Transformer encoder.

For this setup, we tried the same training pro-
cedure on half-noisy data as above. However, we
were unable to obtain any reasonable performance
(we got WER of 28 % on LibriSpeech dev-other).
We hypothesize this is due to the vast amount of
weights that must be randomly initialized in the
decoder: BERT is a Transformer encoder only.
Hence it does not have the Encoder-Decoder at-
tention layer which must be trained from scratch.
During the training of the whole model with many
randomly initialized weights, the initially trained
weights from the BERT might depart too far from
the optimum.

To overcome this issue, we use an analogous
adaptation trick as for the training of the acous-
tic model. We freeze all weights initialized from
seed models and train only the randomly initial-
ized weights until convergence (the criterion was
the loss on the validation dataset). This adaptation
takes 13 500 steps in our case. Subsequently, the
training continues as in the previous case with one
exception — we used only ASR corrupted data
from LibriSpeech.

4.5 ASR Results

| CV LSclean LS other
asr (primary) 9.72 4.87 11.67
asr_lm 7.00 4.63 10.25
asrslt 3.26 5.10 11.75
asr_slt-Im 3.97 5.00 10.63
bert 12.93 4.13 10.21
bert_Imf 11.25 4.04 9.69

Table 2: Performance of the submitted models in terms
of % WER on the Common Voice test set (CV), and
LibriSpeech (LS) clean and other test set. | not submit-
ted due to time constraints. Best results in bold.

Table 2 reports the performance of our proposed
systems on Common Voice test set and LibriSpeech
test-clean and test-other.

The performance of “slt”-pretrained models is
very good on Common Voice (CV), reaching WER
of 3.26 %. However, we suspect that the model
overfitted to CV texts. The corpus contains many
speakers, but the set of underlying sentences is
very limited, and our models can memorize them.
The more realistic evaluation on the independent
LibriSpeech other indicates that “asr_slt” is actually
rather poor.

For the general domain, assessed by LibriSpeech
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. N . Weightened

AMIa AMIb AMIc AMId Teddy Autocentrum  Audit AMI Rest  Total
asr (primary) | 35.89 3276 3560 3990 57.43 11.62 9.83 | 35.05 19.67 33.99
asr_Imt 3758 33.66 3532 40.60 56.65 14.01 11.00 | 3570 20.54 34.65
asr_slt 3673 3322 3570 39.69 56.87 10.93 10.22 | 3537 19.66 34.28
asr_slt_Imf 37771 3383 3567 4045 56.31 12.87 10.71 | 35.88  20.07 34.78
asr_bert 36.69 3382 3650 39.63 56.76 12.87 9.60 | 3585 19.64 34.72
asr_Imi 3595 3294 3557 4043  56.20 13.10 10.67 | 3520 2022 34.17
asr_slt_Imj 3772 3386 3559 4059  56.42 13.10 10.71 | 35.88  20.29 34.80
Microsoft 5372 5262 56.67 5858 87.82 39.64 2422 | 54.80 39.75 53.76
Google 51.52 4947 5311 5688 61.01 14.12 17.47 | 51.87 2533 50.03

Table 3: Results in % WER on IWSLT ASR development set. { submitted without punctuation and segmentation.
i submitted with punctuation and segmentation after the deadline.

| AMIa Teddy Autocentrum  Audit | AMIa Teddy Autocentrum  Audit
asr 4.79 1.41 21.66 5.59 asr 8.87 5.20 15.94 22.40
asr_Imf 2.80 1.57 12.53 1.84 asr_Imf 345 2.02 4.16 6.15
asr_Imf* 2.86 1.57 12.79 1.93 asr_Imi* 5.30 4.33 8.64 18.16
asr_slt 4.52 1.48 22.02 5.56 asr_slt 9.77 4.35 16.40 2291
asr_slt_Imf 3.19 1.55 8.85 1.81 asr_slt_Imf 3.45 221 4.00 6.54
asrsltImf* | 3.26 1.55 9.32 1.88 asrslt_lmf* | 5.34 4.20 6.92 20.07
asr_bert 6.08 1.41 19.01 5.79 asr_bert 10.22 3.99 13.38 24.76
asr_Imf 3.92 5.65 21.65 524 asr_Imf 10.79 4.36 17.24 25.09
asr_slt_Imi 4.01 6.08 21.50 5.02 asr_slt_Imi 10.88 3.60 17.34 26.64
Gold ‘ 21.09 5477 42.52 9.03 Gold | 3495  45.57 36.56 38.97

Table 4: Czech BLEU scores on the IWSLT develop-
ment set. T submitted without punctuation and segmen-
tation. I submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

clean, we would choose the BERT-pretrained
model with phoneme LM rescoring. This model
was unfortunately trained too late, so we did not
include it in our submission.

The Non-Native Task setting is very specific,
and we carefully examine the performance on the
IWSLT development (Table 3). The performance
varies considerably, but the baseline setup (‘“asr”)
perform well on average, and it is also not much
worse than the best system on the particular files,
e.g. 9.83 on the Audit file compared to “asr_bert”
which wins there with 9.60. Based on these results,
we selected ““asr” as our primary submission for
speech recognition track.

It the particular domain of non-native speech
recognition, the usefulness of the phoneme lan-
guage model seems to be minor, unlike on the CV
and LS test sets in Table 2. However, this result
could be unreliable because the IWSLT develop-
ment set is very small.

We note that all proposed systems outperform
publicly available Google and Microsoft ASR on
all files in the development set, see the last two
rows of Table 3.

Table 5: German BLEU scores on the IWSLT develop-
ment set. T submitted without punctuation and segmen-
tation. I submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

5 Punctuation, Truecasing and
Segmentation

Our ASR system produces lowercased, unpunc-
tuated text, but the machine translation works on
capitalized, punctuated text, segmented to individ-
ual sentences. We use the same biRNN punctuator,
truecaser and segmenter as Machécek et al. (2020).
The punctuator is a bidirectional recurrent neural
network by Tilk and Alumie (2016) trained on the
English side of CzEng (Bojar et al., 2016). The
truecaser uses tri-grams (Lita et al., 2003). We use
a rule-based Moses Sentence Splitter (Koehn et al.,
2007). More details are in Machécek et al. (2020),
Section 4.2.

6 Machine Translation

Our submission to the SLT track relies on the MT
systems, which are used also by ELITR project
and are described in their submission to this task
(Machacek et al., 2020). We do not rely on their val-
idation for this task. As our primary MT systems,
we select “WMT18 T2T” for Czech and “de T2T”
for German, because they were easily accessible
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Initialization .
Name LM rescoring
Encoder  Decoder ©

asr (primary) | random random no
asr_m random  random yes
asr_slt EN CS CSEN no
asr_slt_Im EN CS CS EN yes
bert EN CS BERT no

Table 6: Submitted English ASR configurations. “EN
CS” means the Transformer encoder was initialized
with the encoder weights from a translation model
trained from English phonemes to Czech graphemes.
“CS EN” means the decoder was initialized from an
MT model translating Czech phonemes to English
graphemes.

through Lindat service’.

“WMTI18 T2T” was originally trained for
English-Czech WMT18 news translation task
(Popel, 2018), and was also between the top sys-
tems in WMT19 (Popel et al., 2019). It is a single-
sentence Transformer Big model in Tensor2Tensor
framework (Vaswani et al., 2018). “de T2T” is a
similar system, but trained on the data for English-
German WMT news translation. Tables 4 and 5
present BLEU scores of our primary systems for
Czech and German, respectively. Note that the files
Teddy, Autocentrum and Audit are very short.

We submit also all other machine translation
systems for Czech and German by ELITR with
our “asr” source for contrastive evaluation. See
Machacek et al. (2020) for more details.

7 Submission Summary

We participate in two tracks of the non-native
speech translation task: speech recognition, and
speech translation into both Czech and German. In
both cases, our submissions are off-line.

The acoustic model was initialized from a check-
point trained on other data than allowed for the task.
Therefore, our systems are unconstrained.

For the speech recognition track, we utilize our
speech recognition pipeline in various configura-
tions. We first obtain the phoneme transcripts using
the acoustic model. For configurations marked with
“_Im”, we additionally use a phoneme language
model during the acoustic model inference. Subse-
quently, we feed these phonetic transcripts to the
phoneme-to-grapheme translation model. We have
three variants of this model: plain (“asr”), with
pre-trained weights from SLT (“slt”), and with pre-

"https://lindat.mff.cuni.cz/services/
translation/
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trained weights from SLT for encoder and BERT
for decoder (“bert”). In this manner, we yield
five different configurations for submission (see
Table 6). The transcripts are then punctuated and
truecased. Based on the punctuation, we further
segment the transcripts. Our primary submission
for the ASR track is the “asr” system.

We do not have our own translation model. To
participate in the translation track, we utilize the
MT systems of the ELITR project, which are
mostly Transformer neural models. We select as
our primary submission the “asr” system.

8 Conclusion

We presented our submissions to the Non-Native
Speech Translation Task for IWSLT 2020.

For the non-native speech recognition, we pro-
posed a pipeline that consists of an acoustic model
and a phoneme-to-grapheme model. We demon-
strated that the proposed pipeline surpasses com-
mercially used ASR on the development set.

To participate in the non-native speech transla-
tion track, we use off-the-shelf translation model
on our ASR transcripts.
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