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1 Executive Summary
In this deliverable we describe the initial automatic speech recognition (ASR) systems that
we created for the ELITR speech translation system. We have investigated different types of
models: hybrid HMM/ANN models, encoder-decoder with attention based sequence-to-sequence
(S2S) and self-attention based S2S models. We have created the models in such a way as to
meet the primary design criteria of the ASR systems of the ELITR speech translation system:
stream processing, real-time processing and low-latency processing. For the inital systems we
have produced traditional HMM/ANN recognition systems, and a proof-of-concept S2S model
for English that advances the state-of-the-art.

We made the initial ASR systems available for the languages Czech, English, German,
French, Spanish and Italian.

As a next step we will advance the S2S workers to a level of maturity that they can be
deployed in the ELITR speech translation system.
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2 Introduction
This deliverable presents the initial automatic speech recognition (ASR) systems developed
for ELITR’s speech translation system. In order for the ASR systems to work in a machine
interpretation set-up, they need to fulfill the following criteria:

Streaming Mode: The systems have to work on streaming ASR input. That means that the
ASR data is not processed in batch mode; instead a continuous stream of audio needs to
be continuously recognized.

Real-time or faster: The systems have to process the incoming audio in real-time or faster
in order to be able to keep up with the incoming speech.

Low-latency: The systems have to output their results in as low a latency as possible, in
order for the audience to be able to follow the speeches in sync with the speakers, their
presentations, and the results of the automatic interpretation.

The creation of the initial ASR systems for ELITR came in a period of dramatic changes
when it comes to ASR systems in general, and low-latency, real-time ASR systems specifically.

While at the on-set of the project the state-of-the-art consisted of HMM based speech
recognition systems that use feed-forward neural networks for the estimation of the HMMs’
emission probabilities, during the first year of the project advances in sequence-to-sequence
(seq2seq) speech recognition technology led to better performance of these models in offline
settings. Therefore, we started to create seq2seq systems that not only perform better in offline
settings, but also fulfill the specifications above in order for the systems to work in the ELITR
setting.

While, in general, leading to drastically lower word error rates, seq2seq systems also have
some disadvantages:

Data needs: Current seq2seq systems tend to need more data in order to surpass HMM based
systems. i.e., when trained on large amounts of data seq2seq systems clearly outperform
HMM systems, but when trained on smaller amounts of data, HMM systems might be
able to outperform seq2seq systems.

End-to-end data Seq2seq systems are exclusively trained on transcribed audio data. For
HMM based systems this is only the case for the acoustic model, while the language
model is trained on text only. This is an advantage because a) text data is often available
in larger amounts than transcribed audio data, and b) domain specific text is often more
readily available than domain specific transcribed audio data.

Vocabulary and language model adaptation Our seq2seq models are open vocabulary mod-
els. Therefore, manually adapting the vocabulary to account for domain specific terms is
not easily doable (at the moment). Also, as the seq2seq models do not have an explicit
language model, adapting the systems on text only is not possible (at the moment).
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3 Types of systems investigated
3.1 Hybrid HMM/ANN ASR with the JRTk
The conventional approach to statistical automatic speech recognition (ASR) uses a Bayes
classifier and Hidden Markov Model (HMM) to decouple the modeling posterior P (W | X),
i.e. the probability of a textual transcript W given acoustic feature X, into two independent
probabilities P (X | W ) and P (W ). Then, these probabilities are modeled separately by an
acoustic model and a language model in training and combined within a Viterbi beam search
for inference. The recent advances of artificial neural networks (ANN) in both acoustic modeling
and language modeling have made the hybrid HMM/ANN approach dominant in many types
of ASR applications.

We have used the Janus Recognition Toolkit (JRTk) (Finke et al., 1997) for the development
of HMM/ANN ASR systems for the initial phase of the ELITR project. JRTk includes the IBIS
dynamic decoder (Soltau et al., 2001), which allows inference to run in real-time which is the key
component to build low-latency and streaming ASR systems. The adoption of a HMM/ANN
ASR is very useful for speech translation tasks from low-resource languages as the recognition
accuracy can be improved via the adaptation of both the acoustic and language models on small
amounts of in-domain data.

For each supported language (see Section 4), we collected a set of speech data with available
transcripts for training the acoustic model and text data for training the language model.
We then built individual ASR systems for different input languages in the ELITR multilingual
speech translation system. In the setup, the acoustic models are implemented using feed forward
neural networks (FFNN) with 6 layers of 1600 units (or 1024 units for the languages with smaller
amounts of training data) so as to meet the performance and speed requirements. For language
modeling, we trained and used 4-gram language models in all the systems.

3.2 End-to-end Sequence-to-sequence ASR
Attention-based sequence-to-sequence (S2S) models, which use a neural network architecture to
approximate the direct mapping from the acoustic signal to the textual transcript, have become
a very efficient approach for building high performance speech recognition systems, as in batch
processing on GPUs they have a very low real-time factor while at the same time having a
significantly lower word error rate Chan et al. (2016); Bahdanau et al. (2016). The advantage
of the S2S approach lies in its simplification of training an entire speech recognition system,
thereby hiding the awareness of complicated components as in the HMM-based systems. A
typical S2S network architecture has three basic components:

Encoder The encoder is analogous to a conventional acoustic model, which takes the input
features and maps them to a higher-level feature representation.

Decoder Given the encoder’s output the decoder estimates a distribution over output tokens.

Attention The time-alignment between the encoder and the decoder is handled by the atten-
tion mechanism.

We have investigated how to build such an S2S system for the ASR part of a speech transla-
tion system. As S2S models require typically a large amount of training data for their efficiency,
we started with publicly available speech data sets and focused on English. The initial research
has been published in Nguyen et al. (2020b) in which we have proposed a setup for building
high-performance S2S systems with two different architectures: a) an LSTM network in both
the encoder and the decoder b) a model that uses self-attention in all components. In the
same study, we have shown that on the Switchboard and Fisher telephone conversation bench-
marks, our proposed S2S ASR systems outperform the best reported HMM/ANN ASR in the
offline condition in two training settings: 300 and 2000 hours of speech. We also provided a
different S2S ASR system trained on a non-native speech dataset to the ELITR submission on
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the non-native speech translation task of IWSLT 2020 Ansari et al. (2020). The results from
the submission have potentially shown that the S2S systems perform very well in recognizing
non-native speech.

While the S2S models have been shown to outperform other approaches on standard speech
recognition tasks in an offline setup, they face several challenges when having to work in online
mode (i.e., when the complete audio data is not available before processing ). For the deployment
of the proposed S2S ASR model in a run-on and streaming setting our analysis in Nguyen
et al. (2020a) shows that the attention mechanism, the encoder component and the standard
beam-search inference encounter latency issues . To mitigate these problems, we introduced an
additional loss function controlling the uncertainty of the attention mechanism, a modified beam
search identifying partial, stable hypotheses, ways of working with BLSTMs in the encoder,
and the use of chunked BLSTMs. In the experiments with telephone communication speech,
we showed that with a delay of 1.5 seconds in all output elements, our proposed streaming
recognizer can achieve the ideal performance of an offline system with the same configuration.

3.3 Enhanced ASR with phoneme-level intermediate step
Another requirement on the ASR is to provide robust performance in various situations. Besides
of the bad acoustics or low-quality hardware, the pronunciation of a speaker can have significant
impact on resulting quality of the transcripts. We therefore started to investigate another
approach targeted at improving robustness to phonetic variations resulting from accents and
dialects.

Motivated by recent work by Salesky et al. (2019) and Hrinchuk et al. (2019), we explored a
robust ASR pipeline consisting of two components — an acoustic model recognizing phonemes,
and a phoneme-to-grapheme translation model. We decided to use phonemes as the intermediate
representation between the acoustic and the translation model because we believe that the
conventional grapheme representation is too constrained with complicated rules of mapping
speech to a transcript. This issue becomes immense when dealing with dialects and non-native
speakers. In such case, the ASR may guess grapheme (standard) word that is “far” from
the pronounced word. The acoustic model of the proposed system should output phoneme
transcript matching pronunciation and the following phoneme-to-grapheme model should output
a corrected transcript based on the context.

First, we investigated how well the proposed pipeline performs when trained on clean data.
Notably, we trained the phoneme-to-grapheme translation model on a non-speech text corpus
artificially translated to phonemes. The trained models did not outperform the baseline. But
to our surprise, its performance is only slightly worse.

To support robustness, we further investigated several training and fine-tuning schemes using
transfer from related task (SLT) and “corrupted” data. We gathered the “corrupted” acoustic
data by inferring speech corpora using an ensemble of acoustic models for each language (English
and Czech). The obtained “corrupted” transcripts where then paired with golden transcripts
and used in the training of the translation model.

Further, we initialized phoneme-to-grapheme translation model with weights from SLT task
(i.e., the encoder with weights from Cs-to-En SLT and the decoder with En-to-Cs SLT for Czech
ASR, and vice versa for English ASR).

We made two key observations:

1. using “corrupted” data for training helps to reduce the WER,

2. transfer learning from SLT further promotes the robustness of the ASR.

Further details can be found in Polák (2020). We also participated with this system (see
Polák et al. (2020), reproduced here in Appendix A) in the Non-Native Speech Translation Task
for IWSLT 2020 (Ansari et al., 2020).
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3.4 Domain adaptation of Czech speech recognition
One of the challenges of automatic speech recognition is adaptation of the system trained on a
large amount of general acoustic data to a specific target domain. As part of our research, we
have developed a scalable domain adaptation pipeline for Czech, aiming to reduce the gap in
performance between various domains. Our adaptation techniques mainly focus on the language
model and lexicon adaptation. We conduct experiments described in this section with the Kaldi
toolkit Povey et al. (2011).

Test sets To test our adaptation techniques, we have prepared five distinct test sets from
various domains. These include Czech parliament hearings (PS), Euro parliament debates
(EP), presentations about computational linguistics (CS), Conference of Supreme Audit Office
in Prague (SAO), and talks from Czech broadcast station Český Rozhlas (ČRO). We include
details of our test sets in Table 1.

Test set EP CL ČRO PS SAO
Total hours 2:45:25 1:46:01 2:06:41 2:44:58 0:41:08
Total words 17051 12644 18363 20592 3759
Unique words 4381 2746 4362 3847 1375
Unique speakers 4 1 8 53 1
Total distinct talks 3 2 6 1 1

Table 1: Test set statistics

Domain adaptation algorithm We first identify the target domain and extract as many ex-
isting text materials as possible. These typically include slides of a particular presentation,
abstract of a relevant paper or news articles, and keywords relevant to the target domain.
Using the obtained set of sentences, we embed them into a latent space using the sentence
embedding technique described in Arora et al. (2016). As our main corpus, we use SumeCzech
(Straka et al., 2018). This corpus comprises approximately one million Czech articles collected
from various online news sites such as “Novinky.cz”, “Denik.cz” or “Idnes.cz”. Each article is
divided into title, abstract and full-text. We divide each abstract and title into sentences, and
for each of them remember the mapping to the full-text article to which they belong. We then
embed these sentences obtained from abstracts and titles using the same sentence embedding
algorithm. For each of our collected domain sentence, we compute cosine similarity with all
the abstracts and title sentences from SumeCzech and select n (this is a hyper parameter of
our algorithm that can be specified by the user) most similar ones. Finally, we map these most
similar titles and abstract sentences back to their full-text articles.
The second part of our algorithm uses two existing applications developed by the Czech National
Corpus. These are KonText1 and KWords2. We take the text collection obtained from the first
part of the algorithm and search for domain-specific words inside it by KWords application.
It compares the relative frequencies of each word in the input text against frequencies in the
selected backend corpus. We then compute the χ2 and log-likelihood statistical tests on the
frequency differences, and we sort the words in descending order from the most domain-specific
to the least domain-specific. This way, we extract the m (this is again hyperparameter of our
algorithm) most significant words from our domain text corpus. We then query each of these
words into the KonText application. It searches a large text corpus and outputs all available
contexts for a particular word. We extract k (this parameter is usually set to 100-200) context
sentences for each query word and include all collected contexts into our domain texts from the
first part of the algorithm.
Finally, we train a domain-specific n-gram language model and interpolate it with a larger and

1https://kontext.korpus.cz/
2https://kwords.korpus.cz/
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more general n-gram model. The domain words also extend the model lexicon, and we recompile
the Kaldi decoding graph using this new interpolated language model and its lexicon.

Results In Table 2 we present the results of all evaluated systems on all our test sets. We
compare our models against the Google Cloud Czech ASR3 and against the UWebASR (Švec
et al., 2018) provided by the University of West Bohemia.4 As our systems, we first present the
baseline model, which uses the general language model trained on three million news sentences.
We adapt the N-gram adaptation model by the algorithm described in the previous section to
the domain of each of our test sets (resulting in 5 distinct models). We also extend the model
lexicon by the domain words. Lastly, we extend the N-gram adaptation model by recurrent
neural network lattice re-scoring. The architecture of the recurrent language model is described
in Xu et al. (2018). The RNN language model was also trained using the interpolation of the
domain-specific and general text data.

Model type EP CL ČRO PS SAO
Google Cloud 9.562 6.371 14.729 9.646 3.383
UWB 14.133 7.447 9.425 8.556 4.334
Baseline 6.606 3.933 6.737 9.771 3.591
N-gram adaptation 6.780 3.140 6.587 9.389 1.519
RNNLM adaptation 5.972 3.138 6.475 9.389 1.493

Table 2: Word error rates of all considered systems and test sets.

From Table 2 we see that the domain adaptation can help improve model performance across
a diverse set of domains. In the future, we plan to experiment with acoustic adaptation, where
we could adapt the neural network acoustic model to the voice of a specific speaker or to a
particular acoustic condition.

3https://cloud.google.com/speech-to-text
4https://lindat.mff.cuni.cz/services/uwebasr/
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4 Language Coverage
Using the technologies above we were able to cover the languages: Czech, English, German,
French, Spanish and Italian.

Table 3 gives an overview for which languages which types of systems are available at this
point and the total amount of training data used for creating the workers. The training data
used is generally a mixture of data from the European Parliament and Broadcast News. For
English, additional data from the Technology, Entertainment, Design (TED) conferences and
from telephone conversations (Switchboard and Fisher data) was available.

Language # Training Data Types of Workers
Czech 444 HMM/ANN
English 1500 HMM/ANN, enc/dec
German 450 HMM/ANN
French 268 HMM/ANN
Spanish 272 HMM/ANN
Italian 178 HMM/ANN

Table 3: Languages serviced by ASR workers, the amount of training data they were trained
on in hours and the type of model used: hybrid HMM/ANN (HMM/ANN) model, S2S encode-
decoder with attention model (enc/dec)

5 Conclusion
In this deliverable we have described the initial ASR system developed for the ELITR speech
translation system. We have investigated a variety of different modeling techniques, such as
hybrid HMM/ANN systems, encoder-decoder with attention based sequence-to-sequence models
and self-attention models. We also investigated domain adaptation techniques for hybrid models
and tested them on Czech.

Using these different models, we were able to cover the languages English, German, French,
Spanish, and Italian and provide suitable HMM/ANN workers for the ELITR speech translation
system. The next step will now be to continue the work on sequence-to-sequence models for
which we have shown that we can deploy the in streaming mode as required for ELTIR, and to
produce workers that are mature enough to be deployed in the ELITR framework.
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