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1 Executive Summary

This deliverable describes the work of WP3 in the first 18 months of the ELITR project. In
this work-package we address spoken language translation (SLT); applying different strategies
to improve the interface between automatic speech recognition (ASR) and machine translation
(MT).

Firstly we explain how we post-process ASR output to make it more similar to the type
of clean written text used to train MT. For this we have developed normalisation components,
which take raw ASR output, remove disfluencies, add punctuation, and apply other fixes to
make it more like written text.

Secondly, we consider the problem of online SLT, which is important for running SLT in
live scenarios such as subtitling. Standard MT systems are trained to translate sentence-by-
sentence and generally run in batch mode, but in online SLT, the input to the MT system is
being provided incrementally, a few words at a time. Additionally, a low-latency ASR system
will output an initial hypothesis which it can then update as the speaker continues and it obtains
more context. The downstream MT system must be able to handle these sentence fragments
well, and should aim for low-latency translation, without introducing too much “flicker” into
the output. We show new research addressing both of these problems.

We also investigate a different strategy for building SLT systems — end-to-end models which
perform both MT and ASR in the one model. These have attracted a lot of attention recently,
and have some potential advantages such as robustness to noise and simplicity, but often their
overall performance is not as good as a cascade of ASR and MT. We develop several different
architectural improvements which improve performance of E2E SLT.

Finally we explain how we put all our SLT components together to build systems for a recent
SLT shared task.
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2 Introduction

This is the interim report on the research of the spoken language translation (SLT) work package.
From the Grant Agreemet, the aim of this work package is:

To ensure high-quality MT for spoken language input, which lags behind the quality
of text-to-text translation due to the noisy nature of ASR.

Viewing this from a system-building perspective, WP3 is about improving the connection be-
tween ASR (as developed in WP2) and MT (as developed in WP4).

In the project plan, the work of WP3 was split into three tasks reflecting different ways of
improving the ASR/MT interface. For the first two tasks we assume a “pipeline” (or “cascade”)
approach to SLT, where the discrete output of the ASR system is fed into the MT system. In
task T3.1 (ASR transcript normalization) we develop methods for post-processing the output
of the ASR so that it can be more accurately translated by a text-to-text MT system; whilst in
task T3.2. we aim to make the MT system more robust to translating the output from ASR,
especially when it contains errors. For task T3.3, we take a different approach, investigating
approaches that try to model ASR and MT jointly — in an end-to-end SLT system.

Below we give a brief explanation of how our work fits with the three tasks in this WP,
and in the sections that follow we describe our progress in more detail. Where appropriate, we
include published or drafted research papers, explaining how they are linked to the project.

T3.1: Normalization of ASR Normalisation of ASR output includes disfluency removal, pun-
cutation, segmentation and truecasing. For these steps we have developed specialised compo-
nents, as described in Section 3. We also addressed normalisation of ASR in our submssions to
the IWSLT (International Workshop on Spoken Language Translation) shared tasks, described
in Section 5.

T3.2: Robust Neural Machine Translation with Noisy Input  Early in the project we re-
alised that an important problem for the MT system was the fact that the transcriptions from
ASR were delivered incrementally, and could be rewritten as the ASR component updated its
hypotheses. Rather than having the MT system wait for ASR to stabilise before translating, we
investigated ways to produce the translation as early as possible, i.e. Online SLT (Section 4).
We also experimented with online SLT systems in our IWSLT systems (Section 5).

T3.3: End-to-End Speech-to-Text Translation We have been investigating these models as
a potential way of improving on standard pipeline models for SLT (Section 6) although so far
we have only used pipeline models in production.

3 Normalisation and Segmentation of ASR

We use two approaches for normalizing raw ASR output into cased punctuated text. The first
is implemented by KIT (Section 3.1), the other by CUNI (Section 3.2). In creating the second
normalizer, CUNI’s goal was to make a more generalizable component that would work with
several different ASR systems, whereas KIT’s component is closely coupled to KIT’s ASR.

The normalization consists of punctuation restoration, truecasing, and, in case of KIT, of
removing disfluency phenomena. The normalized output is then segmented into individual
sentences for MT (Section 3.3).

3.1 KIT Punctuator, Truecaser and Normalizer

The hypotheses from speech recognition contain no punctuation. In order to support a machine
translation system trained on well-structured, written sentence-level texts, we use a separate
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component to insert punctuation and sentence boundaries into the ASR output. This component
also adds correct capitalization to the otherwise lower-cased hypotheses.

Essentially, the punctuation system is a monolingual translation system, which translates
the lower-cased, unsegmented outputs from the ASR components into well-formed texts prior to
the translation system (Cho et al., 2015). We can employ any kind of translation approach and
only a small amount of monolingual data is required for training. In our current punctuation
system, for each language, we train a neural sequence-to-sequence model on spoken texts, e.g.
the transcripts of TED talks. Using our compact representation described by Cho et al. (2017),
we are able to add punctuation and correct capitalization in one go. Furthermore, this compact
representation helps to reduce the vocabulary size of our monolingual translation system, thus,
reducing the model size and making both the training and inference faster.

The models are trained on the multilingual TED corpus, which is just under 200k sentences
for English, and somewhat less for the other languages.

This component is also described in our paper (Franceschini et al., 2020), published in
IWLTP (International Workshop on Language Technology Platforms).

3.2 CUNI Punctuator and Truecaser

The CUNI Punctuator system uses a bidirectional recurrent neural network with an attention-
based mechanism (as described by Tilk and Alumée (2016)) to restore punctuation in the raw
stream of ASR output. The attention mechanism enhances its capacity for determining the
contextual meaning in the ASR stream in order to restore punctuation effectively.

We used the CzEng 2.0 dataset to train the Czech punctuator model and CzEng 1.6 (Bojar
et al., 2016) to train the English punctuator model. We chose CzEng because it is a mixture
of domains, including both originally spoken, which is close to the target domain, and written,
which has richer vocabulary. Furthermore it includes both texts that were originally in English,
and texts originally in Czech which are also expected in our target application. The details of
the numbers of sentences in the training data and the vocabulary size are shown in Table 1 and
the performance of the punctuator is shown in Table 2.

‘ Dataset Train Test Vocabulary size

CS Punctuator | CzEng 2.0 38.60M 200K 1.18M
EN Punctuator | CzEng 1.6  3.29M 200K 100K

Table 1: Dataset description of punctuator systems and number of sentences used to train model
along with most frequent words in the training corpus.

The punctuator system was further integrated with an English tri-gram truecaser by Lita
et al. (2003) that restores the casing of non-cased or badly-cased sentences. We used the Czech
side of Europarl’s Czech-English parallel corpus to train the Czech truecaser and the English
truecaser was trained on 2M English sentences from CzEng.

3.3 Segmentation

The KIT and CUNI punctuating, truecasing and normalization components are deployed as
workers in the Mediator (refer to Franceschini et al., 2020 for a description of our platform).
The punctuated and normalized text is segmented by a language specific rule-based Moses
Sentence Splitter (Koehn et al., 2007) into individual sentences for MT.

The segmentation is performed on the same host as MT, since it is not resource-intensive.
The advantages of this are that there is no additional delay due to communication with Mediator,
and it enables flexibility of the MT cascade for easier swapping between bilingual MT, multi-
lingual MT and pivoting.

Page 6 of 69



European Live Translator g@
D3.1: Report 1 on Spoken Language Translation R

‘ Comma Period Question Overall

Pr. Re. F1 |Pr. Re. F1 |Pr. Re. Fl |Pr. Re Fl SER
CS Punctuator 821 786 803 |8L.1 852 831|785 719 751|812 785 798 263
EN Punctuator 774 710 740 | 812 86.0 83.6 | 845 774 808|803 772 787 284
Tilk and Alumée (2016) | 64.4 452 53.1 | 723 715 71.9 | 67.5 587 62.8 | 689 581 63.1 513

Table 2: Results on CzEng dataset in terms of precision, recall, F1-score, and overall slot error
rate (SER).

4 Online SLT

Since ELITR aims to develop a system for live captioning of events, we decided that it would
be important for SLT to be able to pass the translations to the presentation layer (for output
to the user) as quickly as possible. This means that the person watching the captions would
be able to view them with very little delay after they have been spoken. We refer to this mode
of operation as “Online SLT“, as opposed to “Offline SLT*“ where we do not translate until we
have the whole passage.

If we assume a pipeline approach to SLT, where we have the output of ASR feeding in to an
MT system, then ELITR ASR is already able to operate in an “Online” fashion. This means
that, in theory, ASR sends a message to MT every time it updates its hypothesis', where these
updates may be short extensions, or rewrites of the most recent words. ASR also considers the
older parts of its hypothesis as “stable”, meaning that they are not updated.

More formally, we can consider that the current ASR hypothesis can be expressed as the
concatenation of two buffers, the “stable buffer” (5), and the “unstable buffer” (U). ASR can
send two different types of message to MT:

o Updates to the unstable buffer. This replaces U with U’ where U’ may be either a simple
extension of U (i.e. U is a prefix of U’) or it may be a rewrite of U.

o Extension of the stable region. A prefix of U is removed and appended to the end of S.

If we also view segmentation of the transcription to be formally part of ASR, we should note
that an update of the unstable buffer may include a change of sentence segmentation. An
example of online ASR is shown in Table 3

Thank.

Thank you. Like

Thank you like to

Thank you like to invite you.

Thank you like to invite you to close

Thank you like to invite you to close your eyes.

Thank you like to invite you to close your eyes. Imagine

Thank you like to invite you to close your eyes. Imagine yourself

Thank you like to invite you to close your eyes. Imagine yourself, Stan,
Thank you like to invite you to close your eyes. Imagine yourself standing

Table 3: Sample output from the ASR system. Each line is a separate update, and all of these
updates are “unstable” (i.e. may be revised by later updates).

In the example we can see one point where the sentence segmentation changes (between the
second and third lines the full stop before “like” is removed) and in the last line the end of

In the current production system we find that the MT pipeline is not fast enough to translate every update,
so we have a wrapper which buffers the updates and can skip sending them to MT if it is overloaded
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the hypothesis is rewritten (“Stan” — “standing”). Also we note that all of these are unstable
updates — our online ASR can often have two or three sentences in the unstable buffer.

To develop good online SLT, we need an MT system that can deal with ASR output of the
above form in a sensible way. There are two broad approaches to online SLT, usually known as
the streaming approach and the retranslation approach. Both of these assume a pipeline system
(as opposed to end-to-end). In the streaming approach (Cho and Esipova, 2016; Gu et al., 2017;
Ma et al., 2019; Zheng et al., 2019b,a; Arivazhagan et al., 2019), the basic idea is that the MT
system has an agent which, at each step, chooses whether to extend the translation, or read
more input from the ASR. For this approach, a specialised MT inference algorithm is required,
and usually a specialised MT training algorithm.

In the retranslation approach (Niehues et al., 2016, 2018; Arivazhagan et al., 2020a), we
wrap a standard MT system to create an online system, making it much easier to benefit
from improvements to the standard, batch-translated text-to-text MT technology. As the ASR
output is passed to the MT system, we simply retranslate each sentence prefix and pass the
output to the presentation layer. In the ELITR production system we use the retranslation
approach because of its simplicity, and since we use the fast Marian toolkit (Junczys-Dowmunt
et al., 2018) for inference, we are less concerned about the additional computational load of
retranslating. Indeed, recent work (Arivazhagan et al., 2020b) has shown that the retranslation
approach can have distinct advantages over streaming (in terms of latency).

The baseline approach to retranslation, however, will perform poorly. A standard MT system
is not trained on sentence prefixes so will not perform optimally on them, and since linguistic
differences can force reordering in MT, there can be a lot of annoying flicker in the updates. To
address these problems we have investigated improvements to the baseline retranslation system
(Section 4.2). First though, we needed to understand how to evaluate online SLT (Section 4.1),
in order to measure the trade-offs between different aspects of its output.

4.1 Evaluating Online SLT

In the evaluation of online SLT, we consider three different factors (quality, latency and flicker)
which must be traded off against each other. A successful approach to online SLT should be
able to provide systems which occupy the Pareto frontier for these three measures.

quality is measured using one of the usual automatic metrics, and can refer to the quality of
sentence translation, as well as the quality of the translation of the prefixes.

latency is the “lag” between words being received by MT from ASR and their translation
being sent to the presentation layer.

flicker is the amount that translations change between successive updates.

If the MT system only translates stable ASR output, then its output will always lag behind the
speaker, often for 2-3 sentences; in other words it will have high latency, but quality will be the
same as offline MT and there will be no flicker. If, on the other hand, the MT system translates
immediately when it receives an update from ASR, then latency will be low but we are faced
with the choice of rewriting the output when there is a change (and potentially having high
flicker) or be continue to extend a poor early hypothesis (and harming quality).

4.1.1 SLTev: Open-source toolkit for Evaluation of Spoken Language Translation

To provide a clear standard for SLT evaluation, we develop SLTev, an open-source tool for
assessing the quality of spoken language translation in a comprehensive way. Based on time-
stamped reference transcript and reference translation into a target language, SLTev reports
the quality, delay and stability of a given SLT candidate output. To overtake the segmentation
problem, we proposed a new time-based segmentation, in addition to the classical segmentation
provided by mwerSegmenter toolkit (Matusov et al., 2005).
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To calculate the translation quality, we rely on sacreBLEU? (Post, 2018). Similarly to sacre-
BLEU in MT evaluation, SLTev tags the scores with a fingerprint unambiguously identifying
the evaluation settings.

Delay calculation relies on timing information provided by the user for individual segments.
Each produced word is assumed to have appeared at the time that corresponds proportionally
to its (character) position in the segment. The same strategy is used for the reference words.
Note that the candidate segmentation does not need to match the reference one, but in both
cases, we get an estimated time span for each word. SLTev calculates several delay metrics
based on different strategies. For example, one of them uses GIZA++ (Och and Ney, 2003)
alignment to deal with word reordering in the translated text.

Finally, we proposed two stability metrics. The first is based on counting the number of
words after the first difference between two consecutive sub-outputs. In the second metric, which
is inspired by Arivazhagan et al. (2020a), we report a normalized revision score calculated by
dividing the total number of words produced by the true output length, i.e. by the number of
words in the completed sentences. We report the average score across all documents in the test
set.

We use the proposed evaluation framework to evaluate translation quality, latency, and
stability of submitted works in the IWSLT 2020 Non-Native Speech Translation Shared Task.?
The results are reported in Ansari et al. (2020), see Appendix C for the relevant pages of the

paper.

4.2 Improving the Retranslation Approach
4.2.1 Prefix Training

At UEDIN, we experimented with a similar prefix-training setup to that used by Niehues et al.
(2016). We train a transformer-regular system using the IWSLT17 en-de training set (Cettolo
et al., 2017). We show results on the tst2010 test set.

We trained two different systems. The baseline system used only the parallel, full-sentence
data. For the prefix system, we randomly selected a prefix length for every sentence in the
parallel data, then truncated the source sentence to that length, and truncated its corresponding
target sentence proportionately. We experimented with using alignments from fastalign (Dyer
et al., 2013) to create a more informed correspondence between source and target truncations,
but the performance of this was not different from simple truncation (Niehues et al. (2016)
made similar observations).

We evaluate the two models on full sentences, and on prefixes. In order to create a prefix
test set we apply the same truncation to the source-side of the test set, calculate BLEU precision
as normal, and modify the BLEU length penalty to use the expected length of the hypothesis,
given the source prefix length. The results are shown in Table 4. We notice that, as could be
expected, the prefix system does worse on full sentences, but better on prefixes. The baseline
system tends to produce translations that are too long, when translating prefixes, as it tries to
complete to a full sentence.

System ‘ Full Prefix Length ratio
baseline | 29.0 25.4 1.176
prefix 274 27.6 0.989

Table 4: Comparison of BLEU scores between system trained on only full sentences (baseline)
and a system with training data augmented with truncated sentences (prefix). The systems
are tested both on full sentences, and on prefixes, and the length ratio is shown for the prefix
translations. This is for English—German, IWSLT tst2010.

2We use the default settings, i.e. the signature BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.6.
3h‘ctp ://iwslt.org/doku.php?id=non_native_speech_translation
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We use the system trained on prefixes in our production MT workers at UEDIN.

4.2.2 Multi-Sentence Prefix Training

In CUNI, we attempted to adapt our English-to-Czech translation system for online SLT by
retranslation, using a multi-sentence prefix-training approach. Our motivation was to propose a
model that achieves higher stability than the baseline single-sentence model, and higher quality
in inter-sentential context. We used the method of Niehues et al. (2018), who proposed fine-
tuning of a basic single-sentence translation model on a mixture of full sentences, and aligned
source-target prefixes.

We used our strong Marian model from WMT19 (Popel et al., 2019) as a base for fine-tuning.
We used synthetic news data, with original Czech target and English source back-translated by
the WMT18 Czech-English model (Popel, 2018). We extracted semantically well-aligned source-
target prefixes using a GIZA++ word alignment. Then we generated 100-subword windows of
the prefixes across the sentence boundaries within the documents.

The raw training data consist of 60 million sentences. We generated all the 100-subword
windows from a first and second ninth of training data, randomly sampled 60 million from each
ninth, and shuffled them with raw data. The ratio of full-sentence and prefixes is 1:1, however,
the model could be overtrained for the sentences in the first two ninths. We selected this setup
for initial validation of model performance.

We integrated the model into the ELITR SLT framework for online SLT, with an initial
version of MT Wrapper (see Machacek et al., 2020, Section 5.3), that resolves ASR updates in
one thread and translates and caches them in second thread. It skips the hypotheses outdated
during translation.

We decoded the first TED talk from IWSLT tst2015 with the model. We assesed it with a
simple manual comparison with a baseline single-sentence WMT19 model, and observed follow-
ing:

e The prefix model had higher erasure rate than the base single-sentence model, because it
often modified up to 100 subwords from the end, which can be around 3 or 5 sentences
from the end. The baseline model updates only 1 or 2 sentences from the end.

e The stability could be improved by disabling updates of sentences behind certain size or
timing threshold, and considering them only for translation context.

o The bigger the decoding window size, the longer the translation time. Translation of 100
subwords by Transformer Big takes around 2 seconds, while a single sentence can have
around 20 subwords and takes 0.2 seconds.

o The stability and latency of the prefix model approaches the baseline only if we restrict
the decoding window size to around a sentence size.

e The prefix model is able to correctly determine the number of sentences that it should
output.

e The baseline model cannot be used in prefix mode because it produces single sentences,
even when the input has several sentences.

e The KIT punctuator sometimes changes the punctuation in text a long way from the end.
Freezing older punctuation could improve stability.

By comparing the BLEU scores on the whole tst2015, we realized that the model had lower
quality than the baseline both on ASR and gold transcripts, probably due to the suboptimal
data sampling, and due to overtraining for the news domain.

To conclude, this work resulted in improvements to the MT Wrapper and observations that
we will use for designing further experiments.
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In a recent paper (Arivazhagan et al., 2020a), two methods were proposed for improving the
retranslation approach: masking and biased beam search. In masking, the translation system
“masks” the last k words of its output every time it translates, except at the end of a sentence.
The idea of biased beam search is that the beam search during translation is “biased” towards
the translation of the previous prefix.

Using masking and biased beam search, it is possible to a achieve a better trade-off between
latency, flicker and quality. Arivazhagan et al. (2020a) showed how the could use these two
techniques to significantly reduce the amount of flicker, with only a small increase in latency,
and a small decrease in quality.

We built on the work of this paper in two ways:

y\’\B

4.2.3 Dynamic Masking

1. investigating more fully the trade-offs between the evaluation measures offered by masking
and biased beam search

2. developing a method to dynamically control the mask based on the current source and its
translation

The disadvantages of using biased beam search are that it can have a negative impact on the
quality of the full sentence translation (since it biases the translation of a prefix towards the
translation of the previous prefix, and away from the translation with the highest model score),
and it does not work in the scenario where ASR can rewrite as well as extend. Also, using a
fixed mask is a blunt instrument — in Arivazhagan et al. (2020a) they get good stability with
a global fixed mask of 10, but in many cases a stable translation can be achieved with a much
smaller mask.

Our initial approach to dynamic masking (i.e. using a variable length mask) was based on
word confidence, quite similar to the approach in Kepler et al. (2019). The idea was that,
when we translate, we check the last words at the end of the hypothesis, and predict either
“mask” or “no-mask”, using a model based on running an LSTM over source and hypothesis.
We were able to generate training data by translating sentences and their possible prefixes with
our translation system, and deriving the optimal mask size for each prefix by considering the
translation of the full sentence. Unfortunately this model was completely unable to predict the
correct mask, and we abandoned it in favour of a different formulation of the problem which we
describe below.

The second, and more successful, approach to dynamic masking is one that we refer to
as source prediction. The intuition behind this approach is that the system makes probes to
determine what effect potential extensions of the source would have on the translation. If these
probes show that there could be large changes in the translation in the next prefix (i.e. the
translation is unstable), then it needs to apply large mask, and conversely if the translation so
far is shown to be stable, then a mask is not required.

More formally, the source prediction approach works like this. The MT system receives a
prefix S from the ASR component. It then makes an extension of the prefix to S’, and translates
both S and S to produce T and T”, respectively. The system then compares T and T”, and
determines the longest common prefix (LCP) of these two strings. In general it will output
this LCP, masking the remaining part of 7', however to deal with some less common cases we
introduce an additional refinement. If the LCP is a prefix of the previous translation output (i.e.
the output from the prefix before S) then we just use the previous output. This last refinement
helps to smooth out temporary instabilities in the translation which can cause unnecessarily
large masks.

We experimented with different methods for predicting the extension to S: using a language
model, randomly sampling from the source vocabulary, and simply add UNK symbols. All
methods were able to improve on the latency—flicker trade-off curve given by mask-k, but using
a language model tended to offer reduced latency than the other methods, at the expense of
slightly larger flicker. A further adjustment of the flicker—latency trade-off curve can be achieved
by varying the length of the predicted extensions.
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Further details of the source prediction method, and the experimental results can be found
in our preprint (Yao and Haddow, 2020), which we include as Appendix A

We note that the results of this paper were obtained using simulated ASR. That is to say, we
take the gold transcripts and feed them to the MT system one word at a time. The simulated
ASR only extends, it does not rewrite, and it does not change sentence boundaries. To address
this limitation, we now show results on actual online ASR output. In actual ASR output,
sentence boundaries are inserted by a punctuation component as described in Section 3, but are
unstable and may be revised as the ASR output is updated.

To test the dynamic mask, we used the ASR transcripts produced by our “primary online”
ASR system in our IWSLT submission (Section 5). These transcripts show both the stable and
unstable updates, as described at the start of Section 4. We use the English— German system as
in Yao and Haddow (2020), and we provide evaluations of flicker and latency (as defined in the
paper) for different types of masking. We do not measure translation quality since all variants
produce the same full sentence output. We measure the flicker and latency on each document
in the corpus, treating it as one long sentence for this evaluation. We use token counts for
measuring latency, rather than actual time and use the same method as described in the paper.
For the masking, we have zero mask at a sentence boundary (as in Yao and Haddow (2020)),
despite the fact that sentence boundaries can be unstable.

We assess the following retranslation strategies:

baseline Translate as soon as the ASR output arrives

wait until complete Translate as soon as a complete sentence is available (it may be unsta-
ble).

wait until stable Translate a sentence only when the ASR system marks it as stable.
fixed mask Mask the last k& words of the sentence, where k£ = 5,10, 15.

Im-unk Use dynamic masking with the “unknown” strategy from Yao and Haddow (2020),
with k = 5,10, 15, 20.

Im-sample Use dynamic masking with the “sample” strategy, using 5 samples of length 5.

We show the comparison of these different strategies in Figure 1.

We notice from Figure 1 that the dynamic mask strategy occupies the Pareto frontier,
outperforming the fixed mask (note that the horizontal axis is extended in this Figure because of
the long latency of the “wait until stable” strategy). We also note that all the masking strategies
have relatively high erasure; this is because of the instability of sentence boundaries and the
fact that we do not mask at sentence boundaries. Because of the relatively short sentences, and
instability of the sentence boundaries, the “wait until complete” strategy performs relatively
well, showing improved flicker, but worse latency than the dynamic mask strategies. With
better ASR (and so more stable sentence boundaries) the dynamic masking strategy should
offer a greater advantage. An alternative would be to allow masking across sentence boundaries,
which we have not yet investigated.
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Figure 1: Comparison of dynamic and fixed mask, with retranslation strategies on ASR tran-
scripts. We show the latency (average lag) and flicker (normalised erasure) tradeoff curve.

5 ELITR’s Submissions to IWSLT

ELITR participated in the non-native speech translation task at IWSLT 2020. The challenge
was online and offline SLT of non-native speech from English into Czech and German. Our short-
term motivation for this work was to integrate all the components that consortium partners had
available into a working cascade for online and offline SLT, and evaluate them end-to-end.

We compared and selected primary candidates from a pool of 3 online English ASRs can-
didates, 4 offlines, and 9 from MT systems: 3 into Czech, 2 into German and 4 multilingual.
We validated the candidates on a very limited validation set, and selected KIT-hybrid ASR for
online ASR, KIT-seq2seq for offline ASR, UEDIN IWSLT19 MT model into Czech, and UEDIN
OPUS-B multilingual model for German. More details on primary systems are in Machacek
et al. (2020) and in Appendix B.

The evaluation results are in Ansari et al. (2020) and we reproduce the pages relevant for
the respective IWSLT shared task results here in Appendix C.

6 End-to-End SLT

In the third task of this work package, we have been investigating an alternative approach
to SLT which does not use the traditional cascade. The idea is to train a single model that
performs both ASR and MT, and so can directly convert speech in one language into text in
another language. This is known as end-to-end SLT, or E2E SLT. The potential value of such
models is that ASR and MT learn to cooperate well with each other at training time, becoming
one system, rather than a heuristic pipeline of technologies forced into working together. An
E2E system could also take advantage of non-verbal information in the speech signal.

There has been a lot of recent interest in E2E SLT in the literature (see Sperber and Paulik
(2020) for a useful review) but the general consensus is that pipeline systems can still perform
better, due to being better able to take advantage of large training data sets, and benefitting
from many years of research into their components. Also, online SLT using E2E systems is still
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difficult (see D2.1 for the related problem of online ASR using end-to-end ASR systems).

One claim frequently made about E2E SLT is that it offers better resistance to ASR errors
due to acoustic noise, than a pipeline system. There is little experimental evidence to back this
up though, so this is one avenue we are exploring at UEDIN, by manipulating the input audio
in order to investigate the effect on the output.

In the following subsections we describe three pieces of research (either published or under-
review) contributed by ELITR researchers, and aimed at improving E2E SLT. Since the papers
are included as appendices, we only include a brief summary of the work here.

6.1 Spoken Language Translation via Phoneme-level Representation of the Source
Language

In recent years, there has been a lot of interest in end-to-end architectures for SLT. The advan-
tage of end-to-end solutions is their technical simplicity and better preservation of nonverbal
information contained in the speech. On the other hand, their obvious limitation is the require-
ment of “end-to-end” training datasets, i.e., source language voice recordings paired with the
translated transcripts in the target language. There are only a small number of such datasets
available, compared to the much larger range of datasets for MT and ASR.

Motivated by the findings of Salesky et al. (2019), we explore a re-purposing of the more
traditional pipeline (i.e., a tandem of standalone ASR and MT) in the context of non-native
English to Czech SLT and Czech to English SLT. As the intermediate representation, we choose
phonemes instead of conventional graphemes. Specifically, we compare the traditional approach
(with graphemes as intermediate step) with the proposed one (with the phonemes as interme-
diate step).

To evaluate the pipeline, we collect our own test set. The test set is based on newstest2015
and is read by a Czech woman. We report the results in terms of BLEU in Tables 5 and 6.

As we can observe in the tables, the SLT approach with phoneme-level intermediate step
outperforms the baseline SLT approach in both directions. When tested on clean source (i.e.,
only MT), the baseline seems to be a better option.

For further details, refer to Peter Polak’s MSc thesis (Poldk, 2020).

Page 14 of 69



EV

D3.1: Report 1 on Spoken Language Translation

European Live Translator

‘wonoundisjur paddirgs Yirm 90In0s 9sedIoMO] [RULSLIO ST yderr) oyI[-ySVy 1

"90IN0s (TeursLIo)

URO[D UO SUOP ST YSk) UoIje[suel], 'sjdLIosueI) Sy WOIJ 90IN0S Paurejqo ysej JIS ‘Yse) uoresuel], pue JIS uo soueuriojrod ojenyess op\ - (soworded
0} sewraydeild) oulfeseq ooz 031 YsSuy oy} pue (Hgd — seweyderd o) seweuoyd) [epouwr yoez)) 03 ysy8us pesodoid o) jo uolyenyesy :9 o[qel,

L00Z  60°0T PLGL | 1ECC  LVEE ST | quin o %0 ydes) fueo)  ourpseq | (90anos wedp)
900z 100z 961 | 92T TETT GLIT uotd wed)  Ded | UOIe[SURLL
Pl ESTVD GEVL | 8OO EROT TGOT | g % ORRTHAM - qdeD usy  owppseq | (0mos UsV)
67T  OLFT STV | GELT CILL 7991 % 1981 HEMd ~ UWoud 4SY  DHd LTS
91 y I 91 y I
971§ weayqg 971§ weayqg 1o8ae], JOJID 9INOS 20N0§ [PPOIN

-joundisjur ou ‘pasedun)

-jondasjur ‘pese)

‘uonoundiojur paddri)s YIIm 90INO0S 9SBIIOMO] [RUISLIO ST delr) oyI-{Sy |

"90IN0s (TeursLIo)

RSO UO SUOP ST YSk) UOTje[sUel], 'sjdLIdsueI) QY WOIJ 90IN0S Paurejqo ysej JrIS ‘Yse) uoresuel], pue JIS uo soueuriojrod ojenyess op\ - (soworderd
0} sowrdeId) aurEseq YS[SUY 0} Yooz oY) pue (Hgd — seweyderd o) soweuoyd) ppouwr ysisuz 0} ooz pasodoid oy) Jo uoryenyesry :G o[qe],

LLOE  SETE FLOE| GPOE LOTE TEOE | qoo %0 ydew) fwesr) outpseq | (92amos uesp)
0c0E 808 FPOE | GE0E  T80E  FI0E uoqd wear)  Hzd | Uome[suedL,
6681 PLGT 8T | T061 6961 GEST | o oy % ISTE UM QdwID USY  ourpsvq | (99mos HSY)
€r61 9661 9961 | GL'61 L0°0T LF6I % €VE dAMd  woud USY  DEd LIS
91 y 1| o1 p I

971§ weay 971G weag 108ae], JOJID 92INOY 92IN0§ [PPOIN

-joundisjur ou ‘pasedun)

‘jondasjur ‘pese))

Page 15 of 69



European Live Translator g@
D3.1: Report 1 on Spoken Language Translation R

6.2 Attention-passing and Deep Transformer Models for End-to-End Speech Trans-
lation

In Sperber et al. (2019) we proposed an end-to-end speech translation architecture that is able
to make better use of the available datasets for speech recognition and machine translation.
This is an important step, because the amount of data for direct end-to-end speech translation
is very limited. Being able to train parts of a model on existing ASR or MT data can allow the
model to use significantly more data and achieve better results.

The method is based on an attention-passing method, sharing an attention method between
all combination of source text and audio encoding and source and target text decoding. By
additionally sharing parameters between the source text encoder and decoder, this setup ensures
that the model can get the maximum training effect out of the auxiliary ASR and MT data.

While multitask training is an important technique for end-to-end speech translation, it
seems that utilising the Transformer model (Vaswani et al., 2017) is another key step to achiev-
ing comparable performance to cascaded models. The Transformer has already demonstrated
competitive performance to hybrid models on the ASR task (Pham et al., 2019), applying the
same deep models to SLT is the next promising step for this research.

We include the paper in Appendix E.

6.3 Adaptive Feature Selection for End-to-End Spoken Language Translation

Information in speech signals is not evenly distributed, making it an additional challenge for
end-to-end (E2E) speech translation (ST) to learn to focus on informative features. We have in-
vestigated adaptive feature selection (AF'S) for encoder-decoder based end-to-end speech trans-
lation. We first pre-train an ASR encoder and apply AFS to dynamically estimate the impor-
tance of each encoded speech feature to ASR. A speech translation encoder, stacked on top of
the ASR encoder, then receives the filtered features from the (frozen) ASR encoder. We take
LODrop (Zhang et al., 2020b) as the backbone for AFS, and adapt it to sparsify speech features
with respect to both temporal and feature dimensions.

Results on LibriSpeech En-Fr (Kocabiyikoglu et al., 2018) and MuST-C (Di Gangi et al.,
2019) benchmarks show that AFS facilitates learning of speech translation by pruning out
~84% temporal features, yielding an average translation gain of ~1.3-1.6 BLEU and a decoding
speedup of ~1.4x. In particular, AFS reduces the performance gap compared to the cascade
baseline, and outperforms it on LibriSpeech En-Fr with a BLEU score of 18.56 (without data
augmentation).

More details are in Appendix D, which shows a preprint currently under review.

7 Conclusion

This deliverable has presented the work to date on SL'T in ELITR. In this work-package, we have
focused on building and improving the ELITR production system, evaluation of online SLT,
and research into online SL'T and end-to-end SLT. In the second half of the project, we expect
to continue with these lines of research, as well as transferring the research to the production
system wherever possible.

Papers

The following papers have resulted from the work of WP3. They are all available in the appen-
dices.

e Dynamic Masking for Improved Stability on Spoken Language Translation Yao and Haddow
(2020) (Published on Arxiv, and will be submitted to AMTA)

e ELITR Non-Native Speech Translation at IWSLT 2020 Machécek et al. (2020) (To appear
in TWSLT 2020)
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o Findings of the IWSLT 2020 Evaluation Campaign Ansari et al. (2020) (organization of
the IWSLT 2020 Shared Task on Non-Native Speech Translation. To appear in IWSLT
2020)

o Adaptive Feature Selection for End-to-End Speech Translation Zhang et al. (2020a) (Sub-
mitted to EMNLP)

o Attention-Passing Models for Robust and Data-FEfficient End-to-End Speech Translation
Sperber et al. (2019) (Published in TACL)
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A Dynamic Masking for Improved Stability on Spoken Language
Translation

Dynamic Masking for Improved Stability in Spoken Language Translation

Yuekun Yao and Barry Haddow
University of Edinburgh

Abstract

For spoken language translation (SLT) in live
scenarios such as conferences, lectures and
meetings it is desirable to show the translations
to the user as quickly as possible, and certainly
without waiting until the end of the sentence.
To achieve this we can pipeline an ASR sys-
tem that can deliver results incrementally, with
a standard MT system which retranslates each
sentence prefix it receives. Naively done, this
will result in annoying “flicker” as the MT sys-
tem updates its translation. A possible solution
is to add a fixed delay, or “mask” to the the out-
put of the MT system, but a fixed global mask
introduces undesirable latency to the output.
We show that this mask can be set dynam-
ically, providing a more optimal balance be-
tween latency and flicker.

1 Introduction

A common approach to Spoken Language Trans-
lation (SLT) is to use a cascade (or pipeline) con-
sisting of automatic speech recognition (ASR) and
machine translation (MT). In a live translation set-
ting, such as a lecture or conference, we would
like the transcriptions or translations to appear as
quickly as possible, so that they do not “lag” no-
ticeably behind the speaker. In other words, we
wish to minimise the latency of the system. Many
popular ASR toolkits can produce partial, or incre-
mental, transcriptions. However incremental MT
is less well supported, and is complicated by the
reordering which is often necessary in translation,
and by the use of encoder-decoder models which
assume sight of the whole source sentence.

A straightforward approach to delivering incre-
mental MT is to use a standard MT system, and
produce a new translation every time a partial sen-
tence is received from the ASR system. This can
be referred to as the retranslation approach and
has the advantage that we can use any standard MT

toolkit, for example Marian (Junczys-Dowmunt
et al., 2018) which is highly optimised for trans-
lation speed. However, when using a completely
unadapted MT system in a live translation setting,
there are at least two problems we need to con-
sider:

1. MT training data generally consists of full
sentences, and systems may perform poorly
on partial sentences

2. When MT systems are asked to translate pro-
gressively longer segments of the conversa-
tion, they may introduce radical changes in
the translation as the prefixes are extended. If
these updates are displayed to the user, they
will introduce an annoying “flicker” in the
output, making it hard to read.

We illustrate these points using the small exam-
ple in Figure 1. When the MT system receives the
first prefix (“Several”) it attempts to make a longer
translation, due to its bias towards producing sen-
tences. When the prefix is extended (to “Several
years ago”), the MT system completely revises its
original translation hypothesis. This is caused by
the differing word order between German and En-
glish.

Mehrere Male
Several times

Several —

Several years ago ——  Vor einigen Jahre

Several years ago

Figure 1: Sample translation with standard en—de MT
system. We show the translation output, and its back-
translation into English.

The first problem above could be addressed by
simply adding sentence prefixes to the training
data of the MT system. In fact Niehues et al.
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(2018) showed that this can be an effective strat-
egy for translating sentence fragments, and that
the training pairs can be produced simply by trun-
cating parallel sentences, without taking account
of the word alignment. In our experiments we
found that using prefixes in training required care-
ful mixing of data, and even then performance of
the model trained on truncated sentences was of-
ten worse on full sentences.

A way to address both problems above is with
an appropriate retranslation strategy. In other
words, when the MT system receives a new prefix,
it should decide whether to transmit its translation
in full, partially, or wait for further input, and the
system can take into account translations it pre-
viously produced. A good retranslation strategy
will address the second problem above (too much
flickering as translations are revised) and in so do-
ing so address the first (over-eagerness to produce
full sentences).

In this paper, we focus on the retranslation
methods introduced by Arivazhagan et al. (2020a)
— mask-% and biased beam search. The former is
a delayed output strategy which does not affect
overall quality, but can significantly increase the
latency of the translation system. The latter alters
the beam search to take into account the transla-
tion of the previous prefix, and is used to reduce
flicker without influencing latency much, but can
also damage translation quality. We will show
that using a straightforward method to predict the
value of k in the mask-k strategy, we obtain a more
optimal trade-off of flicker and latency, with no
modifications to the underlying MT system, and
with no effect on translation quality.

2 Incremental MT and Retranslation

Early work on incremental MT used prosody
(Bangalore et al., 2012) or lexical cues (Rangara-
jan Sridhar et al., 2013) to make the translate-or-
wait decision. The frst work on incremental neural
MT used confidence to decide whether to wait or
translate (Cho and Esipova, 2016), whilst in (Gu
et al., 2017) they learn the translation schedule
with reinforcement learning. In all these systems,
the translation of a prefix is only ever extended,
which removes flicker, but overall quality is de-
graded.

In Ma et al. (2019), they address simultane-
ous translation using a transformer (Vaswani et al.,
2017) model with a modified attention mecha-

nism, which is trained on prefixes. They intro-
duce the idea of wait-k, where the translation is
always k words behind the input, reducing flicker.
This work was extended by Zheng et al. (2019b,a),
where a “delay” token is added to the target vocab-
ulary so the model can learn when to wait, through
being trained by imitation learning. The MILk at-
tention (Arivazhagan et al., 2019) also provides
a way of learning the translation schedule along
with the MT model, and is able to directly opti-
mise the latency metric.

In contrast with these recent approaches, re-
translation strategies allow the use of a standard
MT toolkit, with little modification, and so are
able to leverage all the performance and quality
optimisations in that toolkit. The mask-k strategy
of (Arivazhagan et al., 2020a) is inspired by the
wait-k strategy, but is very easy to implement.

In an even more recent paper, contemporaneous
with our work (Arivazhagan et al., 2020b) they
further combine their re-translation system with
prefix training and make comparison with current
best streaming models (e.g. MILk and wait-k
models), showing such a retranslation system is a
strong baseline for Simultaneous Translation.

The idea of mask-k is simply that the MT sys-
tem does not transmit the last & tokens of its output
— in other words it masks them. Once the system
receives a full sentence, it transmits the transla-
tion in full, without masking. The value of k is set
globally and can be tuned to reduce the amount of
flicker, at the cost of increasing latency.

Arivazhagan et al. (2020a) also introduced the
idea of biased beam search, which requires a
small modification to the translation algorithm, to
change the search objective. Biased beam search
aims to reduce flicker by ensuring that the transla-
tion produced by the MT system stays closer to the
translation of the previous (shorter) prefix. Sup-
pose that S is a source prefix, S’ is the extension
of that source prefix provided by the ASR, and T’
is the translation of S produced by the system (af-
ter masking). Then to create the translation 7" of
S’, biased beam search substitutes the model prob-
ability p(t}|t’;, S) with the following expression:

PP(#ilt;, 8) = (1=B)-p(ti|te;, S')+B-6(t;, t;)

where ¢} is the i™ token of the translation hypoth-
esis T/, and f3 is a weighting which we set to 0
when t.; # t__;. In other words, they interpolate
the translation model with a function that keeps it
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close to the previous target, but stop applying the
biasing once the new translation diverges from the
previous one.

As we noted earlier, biased beam search can de-
grade the quality of the translation, and we show
experiments to illustrate this in Section 5. We
also note that biased beam search assumes that the
ASR simply extends its output each time it up-
dates, when in fact ASR systems may rewrite their
output.

3 Dynamic Masking

In the previous section we showed that biased
beam search could address flicker (as measured by
reduced erasure) without increasing latency, at the
expense of reduction in translation quality. The
mask-k strategy is also able to reduce the flicker,
without affecting translation quality, but will cause
an increase in latency. In this section we present
an improvement on the mask-k strategy, which dy-
namically sets the mask, and so is able to offer re-
duced flicker with only a limited effect on latency,
and still without affecting quality.

The main idea is to predict what the next source
word will be, and check what effect this would
have on the translation. If this changes the transla-
tion, then we mask, if not we output the full trans-
lation.

More formally, we suppose that we have a
source prefx S = s1...s,, a source-to-target
translation system, and a function predy, which
can predict the next k& tokens following S. We
translate S’ using the translation system to give a
translation hypothesis 7' = t; ...t,. We then use
predy, to predict the tokens following s, in the
source sentence to give an extended source pre-
fix 8 = s1... SpSp41 - .- Sptk» and translate this
to give another translation hypothesis 7. Compar-
ing T and T", we select the longest common prefix
T, and output this as the translation, thus mask-
ing the final |T'| — |T*| tokens of the translation.
If S is a complete sentence, then we do not mask
any of the output, as in the mask-k strategy. The
overall procedure is illustrated in Figure 2.

In fact, after initial experiments, we found it
was more effective to refine our strategy, and not
mask at all if the translation after dynamic mask
is a prefix of the last translation. In this case we
directly output the last translation. In other words,
we do not mask if is_pre fiz (T}, T} ;) but instead
output T;* ; again, where T} denotes the masked

translation for the ith ASR input. We also notice
that this refinement does not give benefit in mask-
k strategy in our experiments.

To predict the source extensions (i.e. to define
the predy, function), we experimented with 4 dif-
ferent strategies:

Im-sample We sample the next token from a lan-
guage model (LSTM) trained on the source-
side of the parallel training data. We can
choose n possible extensions by choosing n
distinct samples.

Im-greedy This also uses an LM, but chooses the
most probably token at each step.

unknown We extend the source sentence using
the UNK token from the vocabulary.

random We extend by sampling randomly from
the vocabulary, under a uniform distribution.
As with Im-sample, we can generalise this
strategy by choosing n different extensions.

4 Evaluation of Retranslation Strategies

As we stated in Section 2, we consider that the per-
formance of our translation system can be assessed
according to three different aspects — quality, la-
tency and flicker. The system will generally need
to trade off these properties against each other. For
example outputting translations as early as possi-
ble will reduce latency, but if these early outputs
are incorrect then either they can be corrected (in-
creasing flicker) or retained as part of the later
translation (reducing quality). In this section we
will define precisely how we measure these sys-
tem aspects. We assume that the optimal trade-off
between quality, latency and flicker is a question
that can only be settled by user testing.

Latency The latency of the MT system should
provide a measure of the time between the MT
system receiving input from the ASR, and it pro-
ducing output that can be potentially be sent to
the user. A standard MT system would wait until
it has received a full sentence before it produces
any output, which exhibits high latency. Cho and
Esipova (2016) define latency by counting how
many source tokens were seen before outputting
each target token, then normalising this by sen-
tence length. Ma et al. (2019) refer to this earlier
method as average proportion (AP) and criticise
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extend

translate

translate

Figure 2: The source prediction process. The string a b is provided by the ASR system. The MT system then
produces translations of the string and its extension, compares them, and outputs the longest common prefix (LCP)

it because of the way it treats long and short sen-
tences differently, and because it is hard to inter-
pret. Instead they introduce a measure called aver-
age lag (AL), which measures the degree to which
the output lags behind the input. This is done
by averaging the difference between the number
of words the system has output, and the number
of words expected, given the length of the source
prefix received, and the ratio between source and
target length. Formally, AL for source and target
sentences S and 7' is defined as:

AL(S,T) = % S g(t) - %
t=1

where 7 is the number of target words gener-
ated by the time the whole source sentence is re-
ceived, g(t) is the number of source words pro-
cessed when the ¢ target word is produced.

Arivazhagan et al. (2020a) define latency as the
mean time between a source word being received
and the translation of that source word being fi-
nalised. However, this definition conflates latency
and flicker, since outputting a translation and then
updating is penalised for both aspects. The up-
date is penalised for flicker since the translation is
updated (see below) and it is penalied for latency,
since the timestamp of the initial output is ignored
in the latency calculation.

Given the shortcomings of AP, as pointed out by
Ma et al. (2019), and that we prefer latency to be
purely a measure of how quickly a translation is
produced, relative to the input, we adopt AL (av-
erage lag) as our measure of latency. In our imple-
mentation, we calculate the AL at token (not sub-
word) level with the standard tokenizer in sacre-
BLEU (Post, 2018), meaning that for Chinese out-
put we calculate AL on characters.

Flicker The idea of flicker is to obtain a measure
of the potentially distracting changes that are made
to the MT output, as its ASR-supplied source sen-

tence is extended. We assume that straightforward
extensions of the MT output are fine, but changes
which require re-writing of part of the MT output
should result a higher (i.e. worse) flicker score.
Following Arivazhagan et al. (2020a), we measure
flicker using the normalised erasure (NE), which
is defined as the minimum number of tokens that
must be erased from each translation hypothesis
when outputting the subsequent hypothesis, nor-
malised across the sentence. As with AL, we also
calculate the NE at token level.

Quality We measure quality by comparing the
full sentence output of our system against the full
reference sentence. This removes the need for a
heuristic to determine partial references, and fur-
thermore we assume that if the partial sentences
are of poor quality, that this will be reflected in the
other two measures. We use BLEU to assess the
difference between the system output and the ref-
erence, applying the sacreBLEU implementation
(Post, 2018).

5 Experiments

5.1 Biased Beam Search and Mask-£

We first assess the effectiveness of biased beam
search and mask-%k (with a fixed k), providing a
more complete experimental picture than in (Ari-
vazhagan et al., 2020a). For these experiments we
use data released for the IWSLT MT task (Cet-
tolo et al., 2017), in both English—German and
English—Chinese. We consider a simulated ASR
system, which supplies the input to the MT system
one token at a time.

For training we use the TED talk data, with
dev2010 as heldout and tst2010 as test set. The
raw data set sizes are 206112 sentences (en-de)
and 231266 sentences (en-zh). We preprocess us-
ing the Moses (Koehn et al., 2007) tokenizer and
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truecaser (for English and German) and jieba' for
Chinese. We apply BPE (Sennrich et al., 2016)
jointly with 90k merge operations. For our MT
system, we use the transformer-base architecture
(Vaswani et al., 2017) as implemented by Nematus
(Sennrich et al., 2017). We use 256 sentence mini-
batches, and a 4000 iteration warm-up in training.

As we mentioned in the introduction, we
did experiment with prefix training (using both
alignment-based and length-based truncation) and
found that this improved the translation of pre-
fixes, but generally degraded translation for full
sentences. Since prefix translation can also be im-
proved using the masking and biasing techniques,
and the former does not degrade full sentence
translation, we only include experimental results
when training on full sentences.

In Figure 3 we show the effect of varying
£ and k on our three evaluation measures, for
English—German.

Looking at Figure 3(a) we notice that biased
beam search has a strong impact in reducing
flicker (erasure) at all values of 3. However the
problem with this approach is clear in Figure 3(b),
where we can see the reduction in BLEU caused
by this biasing. This can be offset by increasing
masking, also noted in (Arivazhagan et al., 2020a),
but as we show in Figure 3(c) this comes at the cost
of an increase in latency.

Our experiments with en—zh show a roughly
similar pattern, as shown in Figure 4. We find that
lower levels of masking are required to reduce the
detrimental effect on BLEU of the biasing, but la-
tency increases more rapidly with masking.

5.2 Dynamic Masking

We now turn our attention to the dynamic mask-
ing technique introduced in Section 3. We use the
same data sets and MT systems as in the previous
section. To train the LM, we use the source side
of the parallel training data, and train an LSTM-
based LM.

To assess the performance of dynamic mask-
ing, we measure latency and flicker as we vary the
length of the source extension (k) and the number
of source extensions (n) e consider the 4 different
extension strategies described at the end of Sec-
tion 3. The results for both en—de and en—zh are
shown in Figure 5, where we compare to the strat-
egy of using a fixed mask-k. The oracle data point

"https://github.com/fxsjy/jieba

is where we use the full-sentence translations to
set the mask so as to completely avoid flicker.

We observe from Figure 5 that our dynamic
mask mechanism improves over the fixed mask
in all cases, by reducing both latency and flicker.
Varying the source prediction strategy and param-
eters appears to preserve the same inverse rela-
tion between latency and flicker, although offer-
ing a different trade-off. Using several random
source predictions (the green curve in both plots)
offers the lowest flicker, at the expense of high la-
tency, possibly because the prefix extension trans-
lations show a lot of variability. Using the LM
for source prediction tends to have the opposite
effect, favouring a reduction in latency. The pat-
tern across the two language pairs is similar, al-
though we observe a more dispersed picture for
the en—zh results.

‘We now test our retranslation strategy on a bet-
ter performing model, trained on a larger data set.
Specifically, we train the model on the entire par-
allel training data for the WMT20 en-zh task?, in
addition to the TED corpus used above. For the
larger model we prepare as before, except with
30k BPE merges separately on each language, and
then we train a transformer-regular using Marian.
The results are shown in Figure 6. We can verify
that the pattern is unchanged in this setting.

To further explore how this dynamic mask
strategy improves stability, we look at the
English—German corpus and give several exam-
ples in Table 1. Here we do not compare with gold
translations because we want to focus on how dy-
namic mask reduces the flicker caused by the MT
system, rather than the overall quality of the trans-
lation (which is unaffected by dynamic mask).
Note that in the second example, the longest com-
mon prefix between MT (Extension) and MT (e.g.
empty string) is a prefix of Previous Output, thus
we simply take the previous translation as the out-
put for current source as described in Section 3.

We can see that in both examples, dynamic
masks give more stable translations. Although
fixed mask-k strategy can also avoid flicker, it
would require a very large global k value to avoid
flicker in the second example, and so result in re-
dundant latency in the first example. Noticeably,
translations for these two examples share similar
length, which indicates that we cannot relax the

2www.statmt.org/wmt20/

translation-task.html
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&= beta=0
10 -+ beta=025
o= teta=05
- beta=0.75

BLEU

PR

i & 8 1w L) L)
Pumberof masked tokens Pumberof masked tokens numberof masked tokens

(a) Masking versus flicker (measued by (b) Masking versus quality (measured by (c) Masking versus latency (measured by
erasure) BLEU). average lagging).

Figure 3: Effect of varying mask-#, at different values of the biased beam search interpolation parameter, on the
three measures proposed in Section 4.

&= beta=0
—+- bera=025
12| -e- teta=05

- beta=0.75

BLEU

-a- beta=0
— / —+- beta=025

¥, o= beta=05
£ -x- beta=0.75

R I PR

i 6 8 W L) L)
Pumberof masked tokens Pumberof masked tokens numberof masked tokens

(a) Masking versus flicker (measued by (b) Masking versus quality (measured by (c) Masking versus latency (measured by
erasure) BLEU). average lagging).

Figure 4: Effect of varying mask-k, at different values of the biased beam search interpolation parameter, on
English-to-Chinese corpus
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30 .. —e- unknown . - unknown
. random n=1k=125 2.5 N random n=1 k=125
25 RN -e- random n=3k=12,5 N -e- random n=3 k=12,5
g S -®- mask-k k=5,10,15 . -®- mask-k k=5,10,15
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(a) Dynamic Masking for en—de MT system trained on full (b) Dynamic Masking for en—zh MT system trained on full
sentences (measured by AL and NE) sentences (measured by AL and NE)

Figure 5: Effect of dynamic mask with different source prediction strategies. The strategies are explained in
Section 3, and the oracle means that we use the full-sentence translation to set the mask.

global mask-% strategy with length ratios of sen- 6 Conclusion
tences to handle both examples perfectly. Thus,
our proposed dynamic mask strategy is more flex-
ible and accurate than mask-% used in (Arivazha-
gan et al., 2020a).

We propose a dynamic mask strategy to improve
the stability for re-translation method in Simulta-
neous Machine Translation. We have shown that
combining biased beam search with mask-k works
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Source
Extension (Pred)
MT

MT (Extension)
MT (masked)
MT (stable)
Previous Output

and I wonder what you’d choose , because I've been asking my friends

and I wonder what you’d choose , because I've been asking my friends to find my own single

Und ich frage mich, was Sie wiihlen wiirden, denn ich habe meine Freunde gefragt .

Und ich frage mich, was Sie wiihlen wiirden, denn ich habe meine Freunde gebeten, meine eigenen Einzelheiten zu finden.

Und ich frage mich, was Sie wihlen wiirden, denn ich habe meine Freunde

Und ich frage mich, was Sie withlen wiirden, denn ich habe meine Freunde diese Frage oft gestellt und sie wollen alle zuriick gehen.

Und ich frage mich, was Sie wihlen wiirden, denn ich habe

Source
Extension (Pred)
MT

MT (Extension)
MT (masked)
MT (stable)
Previous Output

and , in fact , these kids don’t , so they’re going out and reading their school work

and , in fact , these kids don’t , so they’re going out and reading their school work under them .

Tatsichlich tun diese Kinder das nicht, also gehen sie raus und lesen ihre Schularbeit.

Und tatséichlich tun diese Kinder das nicht, also gehen sie raus und lesen ihre Schularbeit unter ihnen.

Und tatsichlich tun diese Kinder das nicht, also gehen sie raus und lesen ihre

Und tatsichlich tun diese Kinder das nicht, also gehen sie raus und lesen ihre Schularbeit unter den StraBenlampen.

Und tatsiichlich tun diese Kinder das nicht, also gehen sie raus und lesen ihre

Table 1: Examples from the English—German test set. Source row denotes English prefix. MT row denotes
German translation directly from our MT system. Extension (Pred) denotes the extended prefix predicted with
our proposed strategies in Section 3. Here we use Im-sample strategy with k = 5. MT (extension) denotes the
translation for this predicted source extension by our MT system. MT (masked) denotes the final output by our
MT system after dynamic masks and MT (stable) denotes the translation by our MT system for the corresponding
full sentence, which we regard as the stable translation. Finally, Previous Output is the masked output of the MT

system from the previous prefix. We use blue color to denote source and red to denote tokens to be erased.

-e- Im-greedy
Im-sample n=1n=k2,5
- Im-sample n=3 k=125

#° . - unknown
S random n=1k=125
N —- random n=3k=1,25
20 o N\, -®- maskkk=51015
\ .. * oracle (no erasure)
Y N
15 \ \\
\ o .
B\

H
5
1;,

/
/
/
/
¢

Normalised erasure

0.5 .

0.0 *

Average lag

Figure 6: Effect of dynamic mask with different strate-
gies

well in re-translation systems, but biased beam
search hurts the quality and additional mask-k
used to reduce this effect gives a high latency. In-
stead, dynamic mask strategy maintains the trans-
lation quality but gives a much better trade-off be-
tween latency and flicker than mask-k. Our exper-
iments also show that the effect of this strategy de-
pends on both the length and number of predicted
extensions, but the quality of predicted extensions
is less important.

For future research, we would like to combine
biased beam search with dynamic mask to see if

it can give a better trade-off between quality and
latency than (Arivazhagan et al., 2020a) when the
flicker is small enough.
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Abstract

This paper is an ELITR system submission
for the non-native speech translation task at
IWSLT 2020. We describe systems for of-
fline ASR, real-time ASR, and our cascaded
approach to offline SLT and real-time SLT. We
select our primary candidates from a pool of
pre-existing systems, develop a new end-to-
end general ASR system, and a hybrid ASR
trained on non-native speech. The provided
small validation set prevents us from carrying
out a complex validation, but we submit all
the unselected candidates for contrastive eval-
uation on the test set.

1 Introduction

This paper describes the submission of the EU
project ELITR (European Live Translator)' to the
non-native speech translation task at IWSLT 2020
(Ansari et al., 2020). It is a result of a collabora-
tion of project partners Charles University (CUNI),
Karlsruhe Institute of Technology (KIT), and Uni-
versity of Edinburgh (UEDIN), relying on the in-
frastructure provided to the project by PerVoice
company.

The non-native speech translation shared task
at IWSLT 2020 complements other IWSLT tasks
by new challenges. Source speech is non-native
English. It is spontaneous, sometimes disfluent,
and some of the recordings come from a particu-
larly noisy environment. The speakers often have
a significant non-native accent. In-domain train-
ing data are not available. They consist only of
native out-domain speech and non-spoken parallel
corpora. The validation data are limited to 6 man-
ually transcribed documents, from which only 4
have reference translations. The target languages
are Czech and German.

The task objectives are quality and simultaneity,
unlike the previous tasks, which focused only on

"http://elitr.eu

the quality. Despite the complexity, the resulting
systems can be potentially appreciated by many
users attending an event in a language they do not
speak or having difficulties understanding due to
unfamiliar non-native accents or unusual vocabu-
lary.

‘We build on our experience from the past IWSLT
and WMT tasks, see e.g. Pham et al. (2019);
Nguyen et al. (2017); Pham et al. (2017); Wetesko
et al. (2019); Bawden et al. (2019); Popel et al.
(2019). Each of the participating institutions has
offered independent ASR and MT systems trained
for various purposes and previous shared tasks. We
also create some new systems for this task and de-
ployment for the purposes of the ELITR project.
Our short-term motivation for this work is to con-
nect the existing systems into a working cascade
for SLT and evaluate it empirically, end-to-end. In
the long-term, we want to advance state of the art
in non-native speech translation.

2 Overview of Our Submissions

This paper is a joint report for two primary sub-
missions, for online and offline sub-track of the
non-native simultaneous speech translation task.

First, we collected all ASR systems that were
available for us (Section 3.1) and evaluated them
on the validation set (Section 3.2). We selected
the best candidate for offline ASR to serve as the
source for offline SLT. Then, from the ASR sys-
tems, which are usable in online mode, we selected
the best candidate for online ASR and as a source
for online SLT.

In the next step (Section 4), we punctuated and
truecased the online ASR outputs of the valida-
tion set, segmented them to individual sentences,
and translated them by all the MT systems we had
available (Section 5.1). We integrated the online
ASRs and MTs into our platform for online SLT

200
Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 200-208
July 9-10, 2020. (©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17
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(Sections 5.2 and 5.3). We compared them using
automatic MT quality measures and by simple hu-
man decision, to compensate for the very limited
and thus unreliable validation set (Section 5.4). We
selected the best candidate systems for each target
language, for Czech and German.

Both best candidate MT systems are very fast
(see Section 5.5). Therefore, we use them both for
the online SLT, where the low translation time is
critical, and for offline SLT.

In addition to the primary submissions, we in-
cluded all the other candidate systems and some
public services as contrastive submissions.

3 Automatic Speech Recognition

This section describes our automatic speech recog-
nition systems and their selection.

3.1 ASR Systems

We use three groups of ASR systems. They are
described in the following sections.

3.1.1 KIT ASR

KIT has provided three hybrid HMM/ANN ASR
systems and an end-to-end sequence-to-sequence
ASR system.

The hybrid systems, called KIT-h-large-Iml,
KIT-h-large-lm2 and KIT-hybrid, were developed
to run on the online low-latency condition, and
differ in the use of the language models.

The KIT-h-large-lm adopted a 4-gram language
model which was trained on a large text corpus
(Nguyen et al., 2017), while the KIT-hybrid em-
ployed only the manual transcripts of the speech
training data. We would refer the readers to the
system paper by Nguyen et al. (2017) for more
information on the training data and the studies
by Nguyen et al. (2020); Niehues et al. (2018) for
more information about the online setup.

The end-to-end ASR, so-called KIT-seq2seq, fol-
lowed the architecture and the optimizations de-
scribed by Nguyen et al. (2019). It was trained on
a large speech corpus, which is the combination
of Switchboard, Fisher, LibriSpeech, TED-LIUM,
and Mozilla Common Voice datasets. It was used
solely without an external language model.

AII KIT ASR systems are unconstrained because
they use more training data than allowed for the
task.

201

3.1.2 Kaldi ASR Systems

We used three systems trained in the Kaldi ASR
toolkit (Povey et al., 2011). These systems were
trained on Mozilla Common Voice, TED-LIUM,
and AMI datasets together with additional textual
data for language modeling.

Kaldi-Mozilla For Kaldi-Mozilla, we used the
Mozilla Common Voice baseline Kaldi recipe.”
The training data consist of 260 hours of audio.
The number of unique words in the lexicon is 7996,
and the number of sentences used for the base-
line language model is 6994, i.e., the corpus is
very repetitive. We first train the GMM-HMM part
of the model, where the final number of hidden
states for the HMM is 2500, and the number of
GMM components is 15000. We then train the
chain model, which uses the Time delay neural net-
work (TDNN) architecture (Peddinti et al., 2015)
together with the Batch normalization regulariza-
tion and ReLU activation. We use MFCC features
to represent audio frames, and we concatenate them
with the 100-dimensional I-vector features for the
neural network training. We recompile the final
chain model with CMU lexicon to increase the
model capacity to 127384 words and 4-gram lan-
guage model trained with SRILM (Stolcke, 2002)
on 18M sentences taken from English news arti-
cles.

Kaldi-TedLium serves as another baseline,
trained on 130 hours of TED-LIUM data (Rousseau
et al., 2012) collected before the year 2012. The
Kaldi-TedLium model was developed by the Uni-
versity of Edinburgh and was fully described by
Klejch et al. (2019). This model was primarily de-
veloped for discriminative acoustic adaptation to
domains distinct from the original training domain.
It is achieved by reusing the decoded lattices from
the first decoding pass and by finetuning for TED-
LIUM development and test set. The setup follows
the Kaldi 1f TED-LIUM recipe. The architecture
is similar to Kaldi-Mozilla and uses a combina-
tion of TDNN layers with batch normalization and
ReLU activation. The input features are MFCC and
I-vectors.

Kaldi-AMI was trained on the 100 hours of
the AMI data, which comprise of staged meeting
recordings (Mccowan et al., 2005). These data

’https://github.com/kaldi-asr/kaldi/
tree/master/egs/commonvoice/s5
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domain AMI Antrecorp Auditing
document AMla AMIb AMIc AMId | Teddy Autocentrum | Auditing
KIT-h-large-lIm1 | 50.71 47.96 53.11 5043 | 65.92 19.25 18.54
KIT-h-large-Im2 | 47.82  41.71 42.10 4577 | 75.87 28.59 19.81
KIT-hybrid 4072 3845 41.09 43.28 | 58.99 21.04 21.44
KIT-seq2seq 33.73 2854 3445 4224 | 4257 9.91 10.45
Kaldi-TedLium | 42.44 3856 41.83 4436 | 61.12 18.68 22.81
Kaldi-Mozilla 52.89 5637 5850 5890 | 68.72 45.41 34.36
Kaldi-AMI 280+ 2304 2687 2934 | 59.66 20.62 28.39
Microsoft 5372 52.62 56.67 5858 | 87.82 39.64 24.22
Google 5152 4947 53.11 56.88 | 61.01 14.12 17.47

Table 1: WER rates of individual documents in the development set. Kaldi-AMI scores on AMI domain are striked
through because they are unreliable due to an overlap with the training data.

domain  document |sents. tokens duration references
Antrecorp Teddy 11 171 1:15 2
Antrecorp Autocentrum 12 174 1:06 2
Auditing Auditing 25 528 5:38 1
AMI AMlIa 220 1788  15:09 1
AMI AMIb 614 4868 35:17 0
AMI AMlIc 401 3454 24:06 0
AMI AMId 281 1614 13:01 0

Table 2: The size of the development set
iwslt2020-nonnative-minidevset-v2.

The duration is in minutes and seconds. As “refer-
ences” we mean the number of independent referential
translations into Czech and German.

were recorded mostly by non-native English speak-
ers with a different microphone and acoustic envi-
ronment conditions. The model setup used follows
the Kaldi 1i ami recipe. Kaldi-AMI cannot be reli-
ably assessed on the AMI part of the development
due to the overlap of training and development data.
We have decided not to exclude this overlap so that
we do not limit the amount of available training
data for our model.

3.1.3 Public ASR Services

As part of our baseline models, we have used
Google Cloud Speech-to-Text API® and Microsoft
Azure Speech to Text.* Both of these services pro-
vide an API for transcription of audio files in WAV
format, and they use neural network acoustic mod-
els. We kept the default settings of these systems.
The Google Cloud system supports over 100
languages and several types of English dialects
(such as Canada, Ireland, Ghana, or the United
Kingdom). For decoding of the development and
test set, we have used the United Kingdom English

*https://cloud.google.com/
speech-to-text

‘https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

WER weighted average avg

AMI Antrecorp Auditing | domain
KIT-seq2seq" 3296 2610 1045 | 23.17
Kaldi-TedLium 4091 39.72 2281 34.48
Kaldi-Mozilla 56.82 56.96 3436 49.38
Kaldi-AMI 2579 39.97 2839 31.38
Microsoft 54.80 63.52 2422 4751
Google 51.88 3736 1747 35.57
KIT-h-large-lm1 | 50.24 4238  18.54* 37.05
KIT-h-large-lm2 43.32 52.02 19.81 38.38
KIT-hybrid 40.24"  39.85' 2144 | 3384

Table 3: Weighted average WER for the domains in val-
idation set, and their average. The top line-separated
group are offline ASR systems, the bottom are online.
Bold numbers are the lowest considerable WER in the
group. Kaldi-AMI score on AMI is not considered due
to overlap with training data. Bold names are the pri-
mary (marked with 1y and secondary (marked with 2)
candidates.

dialect option. The system can be run either in
real-time or offline mode. We have used the offline
option for this experiment.

The Microsoft Azure Bing Speech API supports
fewer languages than Google Cloud ASR but adds
more customization options of the final model. It
can be also run both in real-time or offline mode.
For the evaluation, we have used the offline mode
and the United Kingdom English (en-GB) dialect.

3.2 Selection of ASR Candidates

We processed the validation set with all the ASR
systems, evaluated WER, and summarized them in
Table 1. The validation set (Table 2) contains three
different domains with various document sizes, and
the distribution does not fully correspond to the test
set. The AMI domain is not present in the test set
at all, but it is a part of Kaldi-AMI training data.
Therefore, a simple selection by an average WER
on the whole validation set could favor the systems
which perform well on the AMI domain, but they

202
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could not be good candidates for the other domains.

In Table 3, we present the weighted average of
WER in the validation domains. We weight it by
the number of gold transcription words in each of
the documents. We observe that Kaldi-AMI has
a good performance on the AMI domain, but it is
worse on the others. We assume it is overfitted for
this domain, and therefore we do not use it as the
primary system.

For offline ASR, we use KIT-seq2seq as the pri-
mary system because it showed the lowest error
rate on the averaged domain.

The online ASR systems can exhibit somewhat
lower performance than offline systems. We select
KIT-h-large-Im1 as the primary online ASR candi-
date for Auditing, and KIT-hybrid as primary for
the other domains.

Our second primary offline ASR is Kaldi-AMI.

4 Punctuation and Segmentation

All our ASR systems output unpunctuated, often
all lowercased text. The MT systems are designed
mostly for individual sentences with proper casing
and punctuation. To overcome this, we first insert
punctuation and casing to the ASR output. Then,
we split it into individual sentences by the punctu-
ation marks by a rule-based language-dependent
Moses sentence splitter (Koehn et al., 2007).

Depending on the ASR system, we use one of
two possible punctuators. Both of them are usable
in online mode.

4.1 KIT Punctuator

The KIT ASR systems use an NMT-based model
to insert punctuation and capitalization in an oth-
erwise unsegmented lowercase input stream (Cho
et al., 2012, 2015). The system is a monolingual
translation system that translates from raw ASR
output to well-formed text by converting words to
upper case, inserting punctuation marks, and drop-
ping words that belong to disfluency phenomena.
It does not use the typical sequence-to-sequence
approach of machine translation. However, it con-
siders a sliding window of recent (uncased) words
and classifying each one according to the punctua-
tion that should be inserted and whether the word
should be dropped for being a part of disfluency.
This gives the system a constant input and output
size, removing the need for a sequence-to-sequence
model.

While inserting punctuation is strictly necessary

203

for MT to function at all, inserting capitalization
and removing disfluencies improves MT perfor-
mance by making the test case more similar to the
MT training conditions (Cho et al., 2017).

4.2 BiRNN Punctuator

For other systems, we use a bidirectional recurrent
neural network with an attention-based mechanism
by Tilk and Alumée (2016) to restore punctuation
in the raw stream of ASR output. The model was
trained on 4M English sentences from CzEng 1.6
(Bojar et al., 2016) data and a vocabulary of 100K
most frequently occurring words. We use CzEng
because it is a mixture of domains, both originally
spoken, which is close to the target domain, and
written, which has richer vocabulary, and both orig-
inal English texts and translations, which we also
expect in the target domain. The punctuated tran-
script is then capitalized using an English tri-gram
truecaser by Lita et al. (2003). The truecaser was
trained on 2M English sentences from CzEng.

5 Machine Translation
This section describes the translation part of SLT.

5.1 MT Systems

See Table 4 for the summary of the MT systems.
All except de-LSTM are Transformer-based neu-
ral models using Marian (Junczys-Dowmunt et al.,
2018) or Tensor2Tensor (Vaswani et al., 2018)
back-end. All of them, except de-T2T, are uncon-
strained because they are trained not only on the
data sets allowed in the task description, but all the
used data are publicly available.

5.1.1 WMT Models

WMT19 Marian and WMT18 T2T models are Mar-
ian and T2T single-sentence models from Popel
et al. (2019) and Popel (2018). WMT18 T2T was
originally trained for the English-Czech WMT18
news translation task, and reused in WMT19.
WMT19 Marian is its reimplementation in Mar-
ian for WMT19. The T2T model has a slightly
higher quality on the news text domain than the
Marian model. The Marian model translates faster,
as we show in Section 5.5.

5.1.2 IWSLT19 Model

The IWSLT19 system is an ensemble of two
English-to-Czech Transformer Big models trained
using the Marian toolkit. The models were origi-
nally trained on WMT19 data and then finetuned
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system \ back-end source-target constrained reference

WMT19 Marian | Marian en—cs no Popel et al. (2019), Section 5.1.1
WMTI18 T2T T2T en—cs no Popel et al. (2019), Section 5.1.1
IWSLT19 Marian en—cs no Wetesko et al. (2019), Section 5.1.2
OPUS-A Marian en<>{cs,de+5 1.} no Section 5.1.3

OPUS-B Marian en<>{cs,de+39 1.} no Section 5.1.3

T2T-multi T2T en<>{cs,de,en+391.} no Section 5.1.4

T2T-multi-big T2T en<>{cs,de,en+391.} no Section 5.1.4

de-LSTM NMTGMinor en—de no Dessloch et al. (2018), Section 5.1.6
de-T2T T2T en—de yes Section 5.1.5

Table 4: The summary of our MT systems.

on MuST-C TED data. The ensemble was a com-
ponent of Edinburgh and Samsung’s submission to
the IWSLT19 Text Translation task. See Section 4
of Wetesko et al. (2019) for further details of the
system.

5.1.3 OPUS Multi-Lingual Models

The OPUS multilingual systems are one-to-many
systems developed within the ELITR project. Both
were trained on data randomly sampled from the
OPUS collection (Tiedemann, 2012), although they
use distinct datasets. OPUS-A is a Transformer
Base model trained on 1M sentence pairs each for 7
European target languages: Czech, Dutch, French,
German, Hungarian, Polish, and Romanian. OPUS-
B is a Transformer Big model trained on a total of
231M sentence pairs covering 41 target languages
that are of particular interest to the project® After
initial training, OPUS-B was finetuned on an aug-
mented version of the dataset that includes partial
sentence pairs, artificially generated by truncating
the original sentence pairs (similar to Nichues et al.,
2018). We produce up to 10 truncated sentence
pairs for every one original pair.

5.1.4 T2T Multi-Lingual Models

T2T-multi and T2T-multi-big are respectively
Transformer and Transformer Big models trained
on a Cloud TPU based on the default T2T hyper-
parameters, with the addition of target language
tokens as in Johnson et al. (2017). The models
were trained with a shared vocabulary on a dataset
of English-to-many and many-to-English sentence
pairs from OPUS-B containing 42 languages in to-
tal, making them suitable for pivoting. The models

>The 41 target languages include all EU languages (other
than English) and 18 languages that are official languages of
EUROSAI member countries. Specifically, these are Alba-
nian, Arabic, Armenian, Azerbaijani, Belorussian, Bosnian,
Georgian, Hebrew, Icelandic, Kazakh, Luxembourgish, Mace-
donian, Montenegrin, Norwegian, Russian, Serbian, Turkish,
and Ukrainian.

do not use finetuning.

5.1.5 de-T2T

de-T2T translation model is based on a Ten-
sor2Tensor translation model model using train-
ing hyper-parameters similar to Popel and Bojar
(2018). The model is trained using all the parallel
corpora provided for the English-German WMT19
News Translation Task, without back-translation.
We use the last training checkpoint during model
inference. To reduce the decoding time, we apply
greedy decoding instead of a beam search.

5.1.6 KIT Model

KIT’s translation model is based on an LSTM
encoder-decoder framework with attention (Pham
et al., 2017). As it is developed for our lecture
translation framework (Miiller et al., 2016), it is
finetuned for lecture content. In order to optimize
for a low-latency translation task, the model is also
trained on partial sentences in order to provide
more stable translations (Niehues et al., 2016).

5.2 ELITR SLT Platform

We use a server called Mediator for the integration
of independent ASR and MT systems into a cas-
cade for online SLT. It is a part of the ELITR plat-
form for simultaneous multilingual speech trans-
lation (Franceschini et al., 2020). The workers,
which can generally be any audio-to-text or text-
to-text processors, such as ASR and MT systems,
run inside of their specific software and hardware
environments located physically in their home labs
around Europe. They connect to Mediator and of-
fer a service. A client, often located in another lab,
requests Mediator for a cascade of services, and
Mediator connects them. This platform simplifies
the cross-institutional collaboration when one insti-
tution offers ASR, the other MT, and the third tests
them as a client. The platform enables using the
SLT pipeline easily in real-time.

204
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5.3 MT Wrapper

The simultaneous ASR incrementally produces the
recognition hypotheses and gradually improves
them. The machine translation system translates
one batch of segments from the ASR output at a
time. If the translation is not instant, then some
ASR hypotheses may be outdated during the trans-
lation and can be skipped. We use a program called
MT Wrapper for connecting the output of self-
updating ASR with non-instant NMT systems.

MT Wrapper has two threads. The receiving
thread segments the input for our MTs into indi-
vidual sentences, saves the input into a buffer, and
continuously updates it. The translating thread is a
loop that retrieves the new content from the buffer.
If a segment has been translated earlier in the cur-
rent process, it is outputted immediately. Other-
wise, the new segments are sent in one batch to the
NMT system, stored to a cache and outputted.

For reproducibility, the translation cache is
empty at the beginning of a process, but in the-
ory it could be populated by a translation memory.
The cache significantly reduces the latency because
the punctuator often oscillates between two vari-
ants of casing or punctuation marks within a short
time.

MT Wrapper has a parameter to control the sta-
bility and latency. It can mask the last £ words of
incomplete sentences from the ASR output, as in
Ma et al. (2019) and Arivazhagan et al. (2019), con-
sidering only the currently completed sentences, or
only the “stable” sentences, which are beyond the
ASR and punctuator processing window and never
change. We do not tune these parameters in the
validation. We do not mask any words or segments
in our primary submission, but we submit multiple
non-primary systems differing in these parameters.

5.4 Quality Validation

For comparing the MT candidates for SLT, we pro-
cessed the validation set by three online ASR sys-
tems, translated them by the candidates, aligned
them with reference by mwerSegmenter (Matusov
et al., 2005) and evaluated the BLEU score (Post,
2018; Papineni et al., 2002) of the individual doc-
uments. However, we were aware that the size
of the validation set is extremely limited (see Ta-
ble 2) and that the automatic metrics as the BLEU
score estimate the human judgment of the MT qual-
ity reliably only if there is a sufficient number of
sentences or references. It is not the case of this

205

validation set.

Therefore, we examined them by a simple com-
parison with source and reference. We realized
that the high BLEU score in the Autocentrum docu-
ment is induced by the fact that one of the translated
sentences matches exactly matches a reference be-
cause it is a single word “thanks”. This sentence
increases the average score of the whole document,
although the rest is unusable due to mistranslated
words. The ASR quality of the two Antrecorp doc-
uments is very low, and the documents are short.
Therefore we decided to omit them in comparison
of the MT candidates.

‘We examined the differences between the can-
didate translations on the Auditing document, and
we have not seen significant differences, because
this document is very short. The AMIa document
is longer, but it contains long pauses and many iso-
lated single-word sentences, which are challenging
for ASR. The part with a coherent speech is very
short.

Finally, we selected the MT candidate, which
showed the highest average BLEU score on the
three KIT online ASR systems both on Auditing
and AMIa document because we believe that av-
eraging the three ASR sources shows robustness
against ASR imperfections. See Table 5 and Ta-
ble 6 for the BLEU scores on Czech and German.
The selected candidates are IWSLT19 for Czech
and OPUS-B for German. However, we also sub-
mit all other candidates as non-primary systems to
test them on a significantly larger test set. We use
these candidates both for online and offline SLT.

5.5 Translation Time

We measured the average time, in which the MT
systems process a batch of segments of the vali-
dation set (Table 7). If the ASR updates are dis-
tributed uniformly in time, than the average batch
translation time is also the expected delay of ma-
chine translation. The shortest delay is almost zero;
in cases when the translation is cached or for very
short segments. The longest delay happens when
an ASR update arrives while the machine is busy
with processing the previous batch. The delay is
time for translating two subsequent batches, wait-
ing and translating.

‘We suppose that the translation time of our pri-
mary candidates is sufficient for real-time transla-
tion, as we verified in on online SLT test sessions.

We observe differences between the MT systems.
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MT | document | gold | KIT-hybrid KIT-h-large-Im1 KIT-h-large-Im2 | avg KIT
OPUS-B Teddy 42.8463 2418 2.697 1.360 2.158
IWSLT19 Teddy 51.397 1.379 2451 1.679 1.836
WMT19 Marian | Teddy 49.328 1.831 1.271 1.649 1.584
WMTI18 T2T Teddy 54.778 1.881 1.197 1.051 1.376
OPUS-A Teddy 25.197 1.394 1.117 1.070 1.194
T2T-multi Teddy 36.759 1.775 0.876 0.561 1.071
WMT18 T2T Autocentrum 42.520 12.134 13.220 14.249 13.201
WMT19 Marian | Autocentrum 39.885 10.899 10.695 12.475 11.356
OPUS-B Autocentrum 29.690 12.050 10.873 9.818 10914
IWSLT19 Autocentrum 37.217 9.901 8.996 8.900 9.266
OPUS-A Autocentrum 30.552 9.201 9.277 8.483 8.987
T2T-multi Autocentrum 20.011 6.221 2.701 3.812 4.245
IWSLT19 AMlIa 22.878 5.377 2.531 3.480 3.796
WMT18 T2T AMlIa 21.091 5.487 2.286 3411 3.728
WMT19 Marian | AMla 22.036 4.646 2.780 3.739 3.722
OPUS-B AMla 19.224 4.382 3.424 2.672 3.493
OPUS-A AMla 15.432 3.131 2431 2.500 2.687
T2T-multi AMla 13.340 2.546 2.061 1.847 2.151
IWSLT19 Auditing 9.231 1.096 3.861 2.656 2.538
OPUS-B Auditing 6.449 1.282 3.607 2274 2.388
OPUS-A Auditing 8.032 1.930 4.079 0.900 2.303
WMT19 Marian | Auditing 8.537 1.087 3.571 1.417 2.025
WMT18 T2T Auditing 9.033 1.201 2.935 1.576 1.904
T2T-multi Auditing 3.923 1.039 1.318 1.110 1.156

Table 5: Validation BLEU scores in percents (range 0-100) for SLT into Czech from ASR sources. The column
“gold” is translation from the gold transript. It shows the differences between MT systems, but was not used in

validation.

The size and the model type of WMT19 Marian
and WMT18 T2T are the same (see Popel et al.,
2019), but they differ in implementation.

WMT19 Marian is slightly faster than IWSLT19
model because the latter is an ensemble of two
models. OPUS-B is slower than OPUS-A because
the former is bigger. Both are slower than WMT19
Marian due to multi-targeting and different prepro-
cessing. WMT19 Marian uses embedded Senten-
cePiece (Kudo and Richardson, 2018), while the
multi-target models use an external Python process
for BPE (Sennrich et al., 2016). The timing may
be affected also by different hardware.

At the validation time, T2T-multi and T2T-multi-
big used suboptimal setup.

6 Conclusion

We presented ELITR submission for non-native
SLT at IWSLT 2020. We observe a significant qual-
itative difference between the end-to-end offline
ASR methods and hybrid online methods. The
component that constrains the offline SLT from
real-time processing is the ASR, not the MT.

We selected the best candidates from a pool of
pre-existing and newly developed components, and
submitted our primary submissions, although the
size of the development set limits us from a reli-

able validation. Therefore, we submitted all our
unselected candidates for contrastive evaluation on
the test set. For the results, we refer to Ansari et al.
(2020).

Acknowledgments

The research was partially supported by the grants
19-26934X (NEUREM3) of the Czech Science
Foundation, H2020-ICT-2018-2-825460 (ELITR)
of the EU, 398120 of the Grant Agency of Charles
University, and by SVV project number 260 575.

References

Ebrahim Ansari, Amittai Axelroad, Nguyen Bach, On-
drej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stiiker, Marco
Turchi, and Changhan Wang. 2020. Findings of the
IWSLT 2020 Evaluation Campaign. In Proceedings
of the 17th International Conference on Spoken Lan-
guage Translation (IWSLT 2020), Seattle, USA.

Naveen Arivazhagan, Colin Cherry, Isabelle Te, Wolf-
gang Macherey, Pallavi Baljekar, and George Fos-
ter. 2019. Re-translation strategies for long form,
simultaneous, spoken language translation. ArXiv,
abs/1912.03393.

206

Page 34 of 69




European Live Translator
D3.1: Report 1 on Spoken Language Translation

y\’\B

MT | document | gold | KIT-hybrid KIT-h-large-Im1 KIT-h-large-lm2 | avg KIT
de-T2T Teddy 45.578 2.847 3.181 1411 2.480
OPUS-A Teddy 29.868 1.873 1.664 1.139 1.559
de-LSTM | Teddy 3.133 2.368 2.089 1.254 1.904
OPUS-B Teddy 41.547 2.352 1.878 1.454 1.895
T2T-multi | Teddy 31.939 1.792 3.497 1.661 2.317
de-T2T Autocentrum | 36.564 9.031 6.229 3.167 6.142
OPUS-A Autocentrum | 26.647 8.898 13.004 2.324 8.075
de-LSTM | Autocentrum | 19.573 10.395 13.026 2.322 8.581
OPUS-B Autocentrum | 28.841 10.153 12.134 9.060 10.449
T2T-multi | Autocentrum | 22.631 8.327 8.708 6.651 7.895
de-T2T AMla 34.958 8.048 5.654 7.467 7.056
OPUS-A AMla 30.203 7.653 5.705 5.899 6.419
de-LSTM | AMIa 31.762 7.635 6.642 1.843 5.373
OPUS-B AMlIa 38.315 8.960 7.613 6.837 7.803
T2T-multi | AMIa 28.279 6.202 3.382 3.869 4.484
de-T2T Auditing 38.973 11.589 17.377 18.841 15.936
OPUS-A Auditing 38.866 10.355 19.414 18.540 16.103
de-LSTM | Auditing 21.780 10.590 12.633 11.098 11.440
OPUS-B Auditing 38.173 10.523 18.237 17.644 15.468
T2T-multi | Auditing 22.442 7.896 8.664 11.269 9.276

Table 6: Validation BLEU scores in percents (range 0-100) for MT translations into German from ASR outputs

and from the gold transcript.

MT | avg + std dev
T2T-multi 2876.52 +1804.63
T2T-multi-big 5531.30 +3256.81
IWSLT19 275.51 + 119.44
WMT19 Marian 184.08 £ 89.17
WMT18 T2T 421.11 £+ 201.64
OPUS-B 287.52 + 141.28
OPUS-A 263.31 + 124.75

Table 7: Average and standard deviation time for trans-
lating one batch in validation set, in milliseconds. Bold
are the candidate systems for online SLT.

Rachel Bawden, Nikolay Bogoychev, Ulrich Germann,
Roman Grundkiewicz, Faheem Kirefu, Antonio Va-
lerio Miceli Barone, and Alexandra Birch. 2019.
The university of edinburgh’s submissions to the
wmt19 news translation task. In WMT.

Ondfej Bojar, Ondfej Dusek, Tom Kocmi, Jindfich Li-
bovicky, Michal Novéak, Martin Popel, Roman Su-
darikov, and DuSan Varis. 2016. CzEng 1.6: En-
larged Czech-English Parallel Corpus with Process-
ing Tools Dockered. In TSD.

Eunah Cho, Jan Niehues, Kevin Kilgour, and Alex
Waibel. 2015. Punctuation insertion for real-time
spoken language translation. In IWSLT.

Eunah Cho, Jan Niehues, and Alex Waibel. 2012. Seg-
mentation and punctuation prediction in speech lan-
guage translation using a monolingual translation
system. In JWSLT.

Eunah Cho, Jan Niehues, and Alex Waibel. 2017. Nmt-
based segmentation and punctuation insertion for
real-time spoken language translation. In INTER-
SPEECH.

207

Florian Dessloch, Thanh-Le Ha, Markus Miiller, Jan
Niehues, Thai-Son Nguyen, Ngoc-Quan Pham, Eliz-
abeth Salesky, Matthias Sperber, Sebastian Stiiker,
Thomas Zenkel, and Alexander Waibel. 2018. KIT
lecture translator: Multilingual speech translation
with one-shot learning. In COLING: System Demon-
strations.

Dario Franceschini et al. 2020. Removing european
language barriers with innovative machine transla-
tion technology. In LREC IWLTP. In print.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339-351.

Marcin Junczys-Dowmunt et al. 2018. Marian: Fast
neural machine translation in C++. In ACL System
Demonstrations.

Ondrej Klejch, Joachim Fainberg, Peter Bell, and
Steve Renals. 2019. Lattice-based unsupervised test-
time adaptation of neural networkacoustic models.
CoRR, abs/1906.11521.

Philipp Koehn et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In ACL
Interactive Poster and Demonstration Sessions.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
EMNLP: System Demonstrations.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. TRuEcasIng. In ACL.

Page 35 of 69




European Live Translator
D3.1: Report 1 on Spoken Language Translation

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuangiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In ACL.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005. Evaluating machine transla-
tion output with automatic sentence segmentation.
In International Workshop on Spoken Language
Translation, pages 148—154, Pittsburgh, PA, USA.

Jain Mccowan, J Carletta, Wessel Kraaij, Simone
Ashby, S Bourban, M Flynn, M Guillemot, Thomas
Hain, J Kadlec, Vasilis Karaiskos, M Kronen-
thal, Guillaume Lathoud, Mike Lincoln, Agnes
Lisowska Masson, Wilfried Post, Dennis Reidsma,
and P Wellner. 2005. The ami meeting corpus. Int’l.
Conf. on Methods and Techniques in Behavioral Re-
search.

Markus Miiller, Thai Son Nguyen, Jan Niehues, Eunah
Cho, Bastian Kriiger, Thanh-Le Ha, Kevin Kilgour,
Matthias Sperber, Mohammed Mediani, Sebastian
Stiiker, et al. 2016. Lecture translator-speech transla-
tion framework for simultaneous lecture translation.
In NAACL: Demonstrations.

Thai-Son Nguyen, Markus Miiller, Sebastian Sperber,
Thomas Zenkel, Sebastian Stiiker, and Alex Waibel.
2017. The 2017 KIT IWSLT Speech-to-Text Sys-
tems for English and German. In IWSLT.

Thai Son Nguyen, Jan Niehues, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, Markus Muller, Matthias Sper-
ber, Sebastian Stueker, and Alex Waibel. 2020. Low
latency asr for simultaneous speech translation.

Thai-Son Nguyen, Sebastian Stueker, Jan Niehues,
and Alex Waibel. 2019. Improving sequence-
to-sequence speech recognition training with
on-the-fly data augmentation. arXiv preprint
arXiv:1910.13296.

Jan Niehues, Thai Son Nguyen, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, Markus Miiller, Matthias Sper-
ber, Sebastian Stiiker, and Alex Waibel. 2016. Dy-
namic transcription for low-latency speech transla-
tion. In Interspeech.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Proc. Inter-
speech 2018.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khu-
danpur. 2015. A time delay neural network architec-
ture for efficient modeling of long temporal contexts.
In INTERSPEECH.

208

Ngoc-Quan Pham, Thai-Son Nguyen, Thanh-Le Ha,
Juan Hussain, Felix Schneider, Jan Niehues, Sebas-
tian Stiiker, and Alexander Waibel. 2019. The iwslt
2019 kit speech translation system. In Proceedings
of the 16th International Workshop on Spoken Lan-
guage Translation (IWSLT 2019).

Ngoc-Quan Pham, Matthias Sperber, Elizabeth
Salesky, Thanh-Le Ha, Jan Niehues, and Alexander
Waibel. 2017. Kit’s multilingual neural machine
translation systems for iwslt 2017. In The Interna-
tional Workshop on Spoken Language Translation
(IWSLT), Tokyo, Japan.

Martin Popel. 2018. CUNI transformer neural MT sys-
tem for WMT18. In Proceedings of the Third Con-
ference on Machine Translation: Shared Task Pa-
pers, pages 482-487, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Martin Popel and Ondrej Bojar. 2018. Training Tips
for the Transformer Model. PBML, 110.

Martin ~ Popel, Dominik  Machacek, Michal
Auersperger, Ondfej Bojar, and Pavel Pecina. 2019.
English-czech systems in wmt19: Document-level
transformer. In WMT.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In WMT.

Daniel Povey et al. 2011. The kaldi speech recogni-
tion toolkit. In /EEE Workshop on Automatic Speech
Recognition and Understanding.

Anthony Rousseau, Paul Deléglise, and Yannick Es-
teve. 2012. Ted-lium: an automatic speech recog-
nition dedicated corpus. In LREC.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. ArXiv, abs/1508.07909.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In /CLSP.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In LREC.

Ottokar Tilk and Tanel Alumie. 2016. Bidirectional
recurrent neural network with attention mechanism
for punctuation restoration.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Joanna Wetesko, Marcin Chochowski, Pawel Przy-
bysz, Philip Williams, Roman Grundkiewicz, Rico
Sennrich, Barry Haddow, Antonio Valerio Miceli
Barone, and Alexandra Birch. 2019. Samsung and
University of Edinburgh’s System for the IWSLT
2019. In IWSLT.

Page 36

of 69

y\’\B




European Live Translator
D3.1: Report 1 on Spoken Language Translation

y\’\:-l

R

C Non-Native Speech Translation Task Results (selected pages from
Findings of the IWSLT 2020 Evaluation Campaign)

FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN

Ebrahim Ansari Amittai Axelrod Nguyen Bach Ondrej Bojar
Charles U./IASBS DiDi Labs Alibaba Charles U.
Roldano Cattoni Fahim Dalvi Nadir Durrani Marcello Federico
FBK QCRI QCRI Amazon Al
Christian Federmann Jiatao Gu Fei Huang Kevin Knight
Microsoft Research Facebook Al Alibaba DiDi Labs
Xutai Ma Ajay Nagesh Matteo Negri Jan Niehues
JHU/Facebook Al DiDi Labs FBK Maastricht U.
Juan Pino Elizabeth Salesky Xing Shi Sebastian Stiiker
Facebook Al JHU DiDi Labs KIT
Marco Turchi Alex Waibel Changhan Wang
FBK CMU/KIT Facebook Al
Abstract modal, emotional, para-linguistic, and stylistic as-

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2020) featured this year six chal-
lenge tracks: (i) Simultaneous speech transla-
tion, (ii) Video speech translation, (iii) Offline
speech translation, (iv) Conversational speech
translation, (v) Open domain translation, and
(vi) Non-native speech translation. A total
of 30 teams participated in at least one of
the tracks. This paper introduces each track’s
goal, data and evaluation metrics, and reports
the results of the received submissions.

1 Introduction [Marcello]

The International Conference on Spoken Lan-
guage Translation (IWSLT) is an annual scien-
tific conference (Akiba et al., 2004; Eck and
Hori, 2005; Paul, 2006; Fordyce, 2007; Paul,
2008, 2009; Paul et al., 2010; Federico et al.,
2011, 2012; Cettolo et al., 2013, 2014, 2015,
2016, 2017; Niehues et al., 2018, 2019) for the
study, development and evaluation of spoken lan-
guage translation technology, including: speech-
to-text, speech-to-speech translation, simultane-
ous and consecutive translation, speech dubbing,
cross-lingual communication including all multi-

pects and their applications in the field. The goal
of the conference is to organize evaluations and
sessions around challenge areas, and to present
scientific work and system descriptions. This pa-
per reports on the evaluation campaign organized
by IWSLT 2020, which features six challenge
tracks:

« Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German, either from a speech file into
text, or from a ground-truth transcript into
text;

Video speech translation, targeting multi-
modal speech translation of video clips into
text, either from Chinese into English or from
English into Russian

Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

Conversational speech translation, target-
ing the translation of highly disfluent conver-

1

Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 1-34
July 9-10, 2020. (©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17
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language model fusion techniques.

CASIA (Wang et al., 2020b) ensembled many
models into their submission. They used the un-
filtered data for backtranslation, used a domain
classifier based on segment provenance, and also
performed knowledge-distillation. They also used
13k parallel sentences from external data; see the
“External data” note in Section 6.6.

6.6 Results and Discussion

Appendix A.5 contains the results of the Japanese-
to-Chinese and Chinese-to-Japanese open-domain
translation tasks. Some comments follow below.

Data filtering was unsurprisingly helpful. We
released 4 corpora as part of the shared task.
All participants used existingparallel
and webcrawled parallel_filtered.
Overall, participants filtered out 15%-90%
of the data, and system performance in-
creased by around 2-5 BLEU points.  The
webcrawled parallel unfiltered
corpus was also used successfully, but re-
quired even more aggressive filtering.  The
webcrawled.unaligned data was even
harder to use, and we were pleased to see some
teams rise to the challenge. Data augmentation
via backtranslation also consistently helped.
However, there was interesting variation in
how participants selected the data to be trans-
lated. Provenance information is not common
in MT evaluations; we were curious how it
would be used. Hagiwara (2020) tried filtering
web_crawled_parallel_filtered using
a provenance indicator, but found it was too
aggressive. Wang et al. (2020b) instead trained a
domain classifier, and used it at decoding time to
reweight the domain-specific translation models
in the ensemble.

External data was explicitly allowed, poten-
tially allowing the sharing of external resources
that were unknown to us. Hagiwara (2020) im-
proved on their submitted system, in a separate
experiment, by gathering 80k external parallel
question-answer pairs from HiNative and incor-
porating them into the training set. Wang et al.
(2020b) also improved their system by adding
13k external sentence pairs from hujiangjp. How-
ever, this inadvertently included data from one of
the websites from which the task’s blind test set
was drawn, resulting in 383/875 and 421/875 ex-
act matching segments on the Chinese side and

Japanese side respectively.

Overall, we are heartened by the participation
in this first edition of the open-domain Chinese-
Japanese shared task, and encourage participation
in the next one.

7 Non-Native Speech Translation

The non-native speech translation task has been
added to IWSLT this year. The task focuses on
the very frequent setting of non-native sponta-
neous speech in somewhat noisy conditions, one
of the test files even contained speech transmitted
through a remote conferencing platform. We were
interested in submissions of both types: the stan-
dard two-stage pipeline (ASR+MT, denoted “Cas-
caded”) as well as end-to-end (“E2E”) solutions.

This first year, we had English as the only
source language and Czech and German as the tar-
get languages. Participants were allowed to submit
just one of the target languages.

The training data sets permitted for “con-
strained” submissions were agreed upon the train-
ing data with the Offline Translation Task (Sec-
tion 4) so that task participants could reuse their
systems in both tasks. Participants were however
also allowed to use any other training data, render-
ing their submissions “unconstrained”.

7.1 Challenge

The main evaluation measure is translation quality
but we invited participants to report time-stamped
outputs if possible, so that we could assess their
systems also using metrics related to simultaneous
speech translation.

In practice, the translation quality is severely
limited by the speech recognition quality. Indeed,
the nature of our test set recordings is extremely
challenging, see below. For that reason, we also
asked the participants with cascaded submissions
to provide their intermediate ASR outputs (again
with exact timing information, if possible) and
score it against our golden transcripts.

A further critical complication is the lack of
input sound segmentation to sentence-like units.
The Offline Speech Translation Task (Section 4)
this year allowed the participants to come up either
with their own segmentation, or to rely upon the
provided sound segments. In the Non-Native task,
no sound segmentation was available. In some
cases, this could have caused even a computational
challenge, because our longest test document is
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25:55 long, well beyond the common length of
segments in the training corpora. The reference
translations in our test set do come in segments
and we acknowledge the risk of automatic scores
being affected by the (mis-)match of candidate and
reference segmentation, see below.

7.1.1 SLT Evaluation Measures

The SLT evaluation measures were calculated by
SLTev,? a comprehensive tool for evaluation of
(on-line) spoken language translation.

SLT Quality (BLEU; and BLEU,,,) As said,
we primarily focus on franslation quality and we
approximate it with BLEU (Papineni et al., 2002a)
for simplicity, despite all the known shortcomings
of the metric, e.g. Bojar et al. (2010).

BLEU was designed for text translation with a
clear correspondence between source and target
segments (sentences) of the text. We have ex-
plored multiple ways of aligning the segments pro-
duced by the participating SLT systems with the
reference segments. For systems reporting times-
tamps of individual source-language words, the
segment-level alignment can be based on the exact
timing. Unfortunately, only one system provided
this detailed information, so we decided to report
only two simpler variants of BLEU-based metrics:

BLEU; The whole text is concatenated and
treated as one segment for BLEU. Note that
this is rather inappropriate for longer record-
ings where many n-grams could be matched
far from their correct location.

BLEU,,, (mwerSegmenter + standard BLEU).
For this, first we concatenate the whole doc-
ument and segment it using the mwerSeg-
menter tool (Matusov et al., 2005). Then we
calculate the BLEU score for each document
in the test set and report the average.

Since the BLEU implementations differ in
many details, we rely on a stable one, namely
sacreBLEU (Post, 2018).%!

SLT Simultaneity In online speech translation,
one can trade translation quality for delay and vice
versa. Waiting for more input generally allows the

®https://github.com/ELITR/SLTev

2'We use the default settings, i.e. the signa-
ture BLEU+case.mixed+numrefs.l+smooth.exp+
+tok.l3atversion.l.4.6.

system to produce a better translation. A compro-
mise is sought by systems that quickly produce
first candidate outputs and update them later, at
the cost of potentially increasing cognitive load for
the user by showing output that will become irrel-
evant.

The key properties of this trade-off are captured
by observing some form of delay, i.e. how long the
user has to wait for the translation of the various
pieces of the message compared to directly fol-
lowing the source, and flicker, i.e. how much “the
output changes”. We considered several possible
definitions of delay and flicker, including or ignor-
ing information on timing, segmentation, word re-
ordering etc., and calculated each of them for each
submission. For simplicity, report only the follow-
ing ones:

Flicker is inspired by Arivazhagan et al. (2019a).
We report a normalized revision score calcu-
lated by dividing the total number of words
produced by the true output length, i.e. by
the number of words in the completed sen-
tences. We report the average score across all
documents in the test set.

Delays relies on timing information provided
by the participants for individual segments.
Each produced word is assumed to have ap-
peared at the time that corresponds propor-
tionally to its (character) position in the seg-
ment. The same strategy is used for the refer-
ence words. Note that the candidate segmen-
tation does not need to match the reference
one, but in both cases, we get an estimated
time span for each word.

Delayp,, uses mwerSegmenter to first find corre-
spondences between candidate and reference
segments based on the actual words. Then
the same strategy of estimating the timing of
each word is used.

The Delay is summed over all words and di-
vided by the total number of words considered
in the calculation to show the average delay per
word.

Note that we use a simple exact match of the
candidate and reference word; a better strategy
would be to use some form of monolingual word
alignment which could handle e.g. synonyms. In
our case, non-matched words are ignored and do
not contribute to the calculation of the delay at all,
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Domain Files Overall Duration Segments EN Words CS Words DE Words
Antrecorp 28 0h38m 427 5040 4071 4660
Khan Academy 5 Oh18m 346 2886 2272 2660
SAO 6 1h39m 654 11928 9395 10613
Total 39 2h35m 1427 19854 15738 17933

Table 3: Non-Native Speech Translation Task test data composition. Words are estimated simply by splitting at

whitespace without tokenization.

reducing the reliability of the estimate. To provide
an indication of how reliable the reported Delays
are, we list also the percentage of reference words
matched, i.e. successfully found in the candidate
translation. This percentage ranges from 20% to
up to 90% across various submissions.

Note that only one team provided us with timing
details. In order to examine the empirical relations
between these conflicting measures, we focus on
the several contrastive runs submitted by this them
in Section 7.4.1.

7.1.2 ASR Evaluation Measures

The ASR-related scores were also calculated by
SLTev, using the script ASRev which assumes that
the “translation” is just an identity operation.

We decided to calculate WER using two differ-
ent strategies:

WER; concatenating all segments into one long
sequence of tokens, and

WER,y first concatenating all segments pro-
vided by task participants and then using mw-
erSegmenter to reconstruct the segmentation
that best matches the reference.

In both cases, we pre-process both the candi-
date and reference by lower casing and removing
punctuation.

7.2 Data

7.2.1 Training Data for Constrained
Submissions

The training data was aligned with the Of-
fline Speech Translation Task (Section 4) to al-
low cross-submission in English-to-German SLT.
English-to-Czech was unique to the Non-Native
Task.

The permitted data for constrained submissions
were:

For English ASR:

 LibriSpeech ASR corpus (Panayotov et al.,
2015),

 Mozilla Common Voice,??

* Speech-Translation TED corpus.?®
For English—Czech Translation:

* MuST-C (Di Gangi et al., 2019a), release 1.1
contains English-Czech pair,

« CzEng 1.7 (Bojar et al., 2016).>* Note
that CzEng overlaps with English-German
test data of the Offline Speech Transla-
tion Task so it was not allowed to use
this English-Czech corpus to train English-
German (multi-lingual) systems.

For English—Czech Translation:

e All the data for English-German track by
WMT 201925 News Translation Task, i.e.:

— English-German parallel data,

— German monolingual data,

e MuST-C (Di Gangi et al., 2019a), release 1.0
contains English-German pair,

« Speech-Translation TED corpus,”®  the

English-German texts,

« WIT? (Cettolo et al., 2012).

Zhttps://voice.mozilla.org/en/datasets
— English version en_1488h_2019-12-10

23htt:p://il3pclO6.lra.uka.de/*mmueller/
iwslt-corpus.zip

¥https://ufal.mff.cuni.cz/czeng/
czengl?

Phttp://www.statmt.org/wnt19/

2(’http: //113pcl06.ira.uka.de/~mmueller/
iwslt-corpus.zip
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7.2.2 Test Data

The test set was prepared by the EU project
ELITR? which aims at automatic simultaneous
translation of speech into subtitles in the particular
domain of conference speeches on auditing.

The overall size of the test set is in Table 3.
The details about the preparation of test set com-
ponents are in Appendix A.6.

7.3 Submissions

Five teams from three institutions took part in the
task. Each team provided one “primary” sub-
mission and some teams provided several further
“contrastive” submissions. The primary submis-
sions are briefly described in Table 4. Note that
two teams (APPTEK/RWTH and BUT) took the
opportunity to reuse their systems from Offline
Translation Task (Section 4) also in our task.

For the purposes of comparison, we also in-
cluded freely available ASR services and MT ser-
vices by two companies and denote the cascaded
run for each of them as PUBLIC-A and PUBLIC-B.
The ASR was run at the task submission deadline,
the MT was added only later, on May 25, 2020.

7.4 Results

Appendix A.6 presents the results of the
Non-Native Speech  Translation Task for
English—German and English—Czech, resp.

Note that the primary choice of most teams does
not agree with which of their runs received the best
scores in our evaluation. This can be easily ex-
plained by the partial domain mismatch between
the development set and the test set.

The scores in both German and Czech results
indicate considerable differences among the sys-
tems both in ASR quality as well as in BLEU
scores. Before drawing strong conclusions from
these scores, one has to consider that the results
are heavily affected by the lack of reliable segmen-
tation. If MT systems receive sequences of words
not well matching sentence boundaries, they tend
to reconstruct the sentence structure, causing seri-
ous translation errors.

The lack of golden sound segmentation also af-
fects the evaluation: mwerSegmenter used in pre-
processing of WERy,, and BLEU,,, optimizes
WER score but it operates on a slightly differ-
ent tokenization and casing. While the instability
will be small in WER evaluation, it could cause

Thttp://elitr.eu/

more problems in BLEUy,,. Our BLEU calcu-
lation comes from sacreBLEU it its default set-
ting. Furthermore, it needs to be considered that
this is the first instance of the Non-Native shared
task and not all peculiarities of the used evaluation
measures and tools are quite known.”® A manual
evaluation would be desirable but even that would
be inevitably biased depending on the exact way
of presenting system outputs to the annotators. A
procedure for a reliable manual evaluation of spo-
ken language translation without pre-defined seg-
mentation is yet to be sought.

The ASR quality scores”® WER; and WER
are consistent with each other (Pearson
.99), ranging from 14 (best submission by
APPTEK/RWTH) to 33 WER;. WERpy is
always 1-3.5 points absolute higher.

Translation quality scores BLEU; and BLEU
show a similarly high correlation (Pearson .987)
and reach up to 16. For English-to-German, the
best translation was achieved by the secondary
submissions of APPTEK/RWTH, followed by the
primary ELITR-OFFLINE and one of the sec-
ondary submissions of CUNI-NN. The public ser-
vices seem to score worse, PUBLIC-B follows very
closely and PUBLIC-A seems to seriously under-
perform, but it is quite possible that our cascaded
application of their APIs was suboptimal. The
only on-line set of submissions (ELITR) score be-
tween the two public systems.

The situation for English-to-Czech is similar,
except that APPTEK/RWTH did not take part in
this, so ELITR-OFFLINE provided the best ASR
as well as translations (one of their secondary sub-
missions).

Often, there is a big variance of BLEU scores
across all the submissions of one team. This indi-
cates that the test set was hard to prepare for and
that for a practical deployment, testing on the real
input data is critical.

As expected, the ASR quality limits the trans-

2n our analysis, we also used BLEU as implemented in
NLTK (Bird et al., 2009), observing substantial score differ-
ences. For instance, BUT1 received NLTK-BLEU of 12.68
instead of 0.63 reported in Appendix A.6 BLEU,. For other
submissions, NLTK-BLEU dropped to zero without a clear
reason, possibly some unexpected character in the output.
The explanation of why NLTK can inflate scores is still pend-
ing but it should be performed to be sure that sacreBLEU
does not unduly penalize BUT submissions.

»Note that the same ASR system was often used as the
basis for translation into both Czech and German so the same
ASR scores appear on multiple lines in Tables in Appendix
A.6.
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Team Paper Training Data  Off/On-Line Cascaded
APPTEK/RWTH Bahar et al. (2020a)t Unconstrained Off-Line Cascaded
BUT (unpublished draft) Unconstrained Off-Line Ensemble E2E+Cascaded
CUNI Polak et al. (2020) Unconstrained Off-Line Cascaded
ELITR Machécek et al. (2020)  Unconstrained On-Line Cascaded
ELITR-OFFLINE  Machacek et al. (2020)  Unconstrained Off-Line Cascaded
PUBLIC-A — (public service) Unconstrained Off-Line Cascaded
PUBLIC-B — (public service) Unconstrained Off-Line Cascaded

T The paper describes the basis of the systems but does not explicitly refer to non-native translation task.

Table 4: Primary submissions to Non-Native Speech Translation Task. The public web-based services were added
by task organizers for comparison, no details are known about the underlying systems.

lation quality. WER; and BLEU; correlate nega-
tively (Pearson -.82 for translation to German and
-.66 for translation to Czech). Same correlations
were observed for WER,,, and BLEU .

The test set as well as the system outputs will
be made available at the task web page®® for future
deep inspection.

7.4.1 Trade-Offs in Simultaneous SLT

The trade-offs in simultaneity of the translation
can be studied only on submissions of ELITR,
see Appendix A.6. We see that the Delay ranges
between 1 and up to 2.5 seconds, with Delayy,,
giving sligthly lower scores on average, correlated
reasonably well with Delay (Pearson .989). De-
lay into German seems higher for this particular
set of MT systems.

The best score observed for Flicker is 5.18 and
the worst is 7.51. At the same time, Flicker is not
really negatively correlated with the Delays, e.g.
Delay;s vs. Flicker have the Pearson correlation of
-.20.

Unfortunately, our current scoring does not al-
low to study the relationship between the transla-
tion quality and simultaneity, because our BLEU
scores are calculated only on the final segments.
Any intermediate changes to the translation text
are not reflected in the scores.

Note that the timing information on when each
output was produced was provided by the par-
ticipants themselves. A fully reliable evaluation
would require participants installing their systems
on our hardware to avoid effects of network traffic,
which is clearly beyond the goals of this task.

8 Conclusions

The evaluation campaign of the IWSLT 2020 con-
ference offered six challenge tracks which at-
tracted a total of 30 teams, both from academy and

30http: //iwslt.org/doku.php?id=non_
native_speech_translation

industry. The increasing number of participants
witnesses the growing interest towards research on
spoken language translation by the NLP commu-
nity, which we believe has been partly driven by
the availability of suitable training resources as
well as the versatility of neural network models,
which now permit to directly tackle complex tasks,
such as speech-to-text translation, which formerly
required building very complex system. We hope
that this trend will continue and invite researchers
interested in proposing new challenges for the next
edition to get in touch with us. Finally, results of
the human evaluation, which was still ongoing at
the time of writing the overview paper, will be re-
ported at the conference and will be included in an
updated version of this paper.
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English—German

- Complete result for English-German SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.
- Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality
System BLEU; BLEUpny | Flicker | Delay[Match%] Delaymw[Match%] | WER:  WERny
APPTEK/RWTH1 14.70 13.28 - - - 14.27 16.26
APPTEK/RWTH2 16.14 15.00 - - - | 1427 16.26
APPTEK/RWTH3 15.92 14.50 - - - 14.27 16.26
BUTI 225 0.63 - - - | 3233 34.09
BUT2 225 0.67 - - - 3291 34.46
BUT3 1.93 0.59 - - - 3291 34.46
BUT4 2.29 0.72 - - 3291 34.46
CUNI-NNI1 6.37 5.86 - - - 28.68 32.10
CUNI-NN12 14.08 12.38 - - - 17.39 20.46
CUNI-NN13 14.32 12.73 - - - 17.02 19.98
CUNI-NN14 6.65 6.20 - - - 28.75 32.23
CUNI-NN15 12.51 10.88 - - - 16.54 18.19
CUNI-NN16 13.15 11.50 - - - 16.33 17.95
ELITR31 9.72 7.22 6.71 1.901 [50.91%] 1.926 [30.01%] | 23.77 25.15
ELITR32 9.18 7.32 7.48 1.926 [30.01%] 1.944 [30.42%] 2291 24.26
ELITR33 9.18 7.32 7.48 1.972 [52.61%] 1.945 [30.43%] 2291 24.26
ELITR34 9.18 7.32 743 1.951 [52.53%] 1.923 [30.41%] | 2291 24.26
ELITR35 9.18 7.32 6.48 2.038 [52.84%] 2.024 [30.76%] 2291 24.26
ELITR36 9.18 7.32 597 2.034 [52.66%] 2.029 [30.79%] 2291 24.26
ELITR37 9.39 7.05 6.33 2.471 [34.14%] 1.828 [31.81%] 23.81 25.25
ELITR38 9.40 7.06 6.35 2.461 [34.24%)] 1.846 [31.85%] 23.81 25.25
ELITR39 9.40 7.06 6.33 2.380 [33.37%] 1.810 [31.63%] 23.81 25.25
ELITR40 9.39 7.05 5.66 2.544 [34.28%] 1.964 [32.28%] 23.81 25.25
ELITR41 9.39 7.06 5.30 2.391 [34.09%] 1.957 [32.28%] | 23.81 25.25
ELITR-OFFLINE21 14.83 12.67 - - - 15.29 17.67
ELITR-OFFLINE22 13.31 11.35 - - - 15.29 17.67
ELITR-OFFLINE23 14.08 12.33 - - - 15.29 17.67
ELITR-OFFLINE24 13.03 10.76 - - - 15.29 17.67
ELITR-OFFLINE25 12.88 10.83 - - - 15.29 17.67
ELITR-OFFLINE26 10.45 8.32 - - - 15.29 17.67
ELITR-OFFLINE27 11.58 9.87 - - - 16.33 17.95
ELITR-OFFLINE28 11.76 9.83 - - - 16.33 17.95
ELITR-OFFLINE29 12.51 10.88 - - - 16.33 17.95
ELITR-OFFLINE30 11.34 942 - - - 16.33 17.95
ELITR-OFFLINE31 12.51 10.53 - - - 16.33 17.95
ELITR-OFFLINE32 7.89 5.72 - - - 16.33 17.95
CUNI-KALDIO1 - - - - - 22.88 24.53
CUNI-KALDIO2 - - - - - 30.42 31.17
CUNI-KALDIO3 - - - - - 21.25 23.40
PUBLIC-A 4.29 3.02 - - - 30.10 31.09
PUBLIC-B 13.75 12.35 - - - 21.54 23.59
32
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English—Czech

- Complete result for English-Czech SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.
- Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality
System BLEU; BLEUw | Flicker | Delays[Match%] Delaynw[Match%] | WER:  WERpy
CUNI-NNOT 10.57 10.34 - - - 28.68 32.10
CUNI-NNO2 10.89 11.50 - - - 17.39 20.46
CUNI-NNO3 12.74 11.38 - - - 17.02 19.98
CUNI-NNO4 10.24 10.21 - - - 28.75 32.23
CUNI-NNO5 11.85 10.57 - - - 16.54 18.19
CUNI-NNO6 12.27 11.00 - - - 16.33 17.95
ELITRO1 7.87 6.22 7.00 1.530 [42.45%] 1.575[23.93%] 23.77 25.15
ELITRO2 7.56 5.95 6.46 1.696 [22.01%] 1.561 [25.25%] 23.81 25.25
ELITRO3 7.56 5.95 6.38 1.744 [22.26%] 1.618 [25.34%] 23.81 25.25
ELITRO4 7.54 5.93 6.38 1.725 [22.09%] 1.603 [25.32%] 23.81 25.25
ELITROS5 8.93 7.67 751 1.605 [44.80%] 1.623 [92.49%] 23.81 25.25
ELITRO6 8.79 7.54 7.00 1.198 [52.55%] 1.082 [32.18%] 23.81 25.25
ELITRO7 8.93 7.67 6.97 1.596 [44.79%] 1.630 [24.86%] 23.81 25.25
ELITRO8 8.93 7.67 6.54 1.586 [44.64%] 1.629 [24.91%] 23.81 25.25
ELITR09 8.93 7.65 7.38 1.520 [42.80%] 1.503 [23.23%] 23.81 25.25
ELITR10 8.93 7.67 7.41 1.630 [44.77%) 1.667 [24.96%] | 23.81 2525
ELITR11 6.50 4.94 6.00 1.677 [20.99%] 1.595 [24.58%] 23.81 25.25
ELITR12 6.50 4.94 6.26 1.610 [20.87%] 1.504 [24.35%] 23.81 25.25
ELITR13 6.50 4.94 6.26 1.495 [19.47%] 1.399 [23.30%] 23.81 25.25
ELITR14 6.52 4.95 5.69 1.650 [20.88%] 1.597 [24.63%] 23.81 25.25
ELITRI15 6.50 4.94 5.18 1.541 [20.71%] 1.594 [24.59%] 23.81 25.25
ELITR16 7.40 5.74 6.64 1.633 [21.89%] 1.468 [24.43%] 23.81 25.25
ELITR17 8.45 7.32 6.56 1.597 [44.85%] 1.728 [25.35%] | 2291 24.26
ELITR18 8.36 7.17 6.00 1.514 [45.58%] 1.629 [26.54%] 2291 24.26
ELITR19 8.56 7.45 531 1.600 [46.81%] 1.713 [27.94%] 2291 24.26
ELITR20 8.55 7.41 6.31 1.557 [45.78%] 1.704 [26.51%] 2291 24.26
ELITR-OFFLINEO]T 13.33 11.75 - - - 15.29 17.67
ELITR-OFFLINEO2 13.44 11.64 - - - 15.29 17.67
ELITR-OFFLINEO3 13.56 11.79 - - - 15.29 17.67
ELITR-OFFLINEO4 14.08 12.57 - - - 15.29 17.67
ELITR-OFFLINEOS 10.07 8.23 - - - 15.29 17.67
ELITR-OFFLINEO6 8.42 6.99 - - - 15.29 17.67
ELITR-OFFLINEO7 9.62 8.16 - - - 15.29 17.67
ELITR-OFFLINEO8 11.88 10.26 - - - 16.33 17.95
ELITR-OFFLINEO9 11.52 9.83 - - - 16.33 17.95
ELITR-OFFLINE1O 11.43 9.99 - - - 16.33 17.95
ELITR-OFFLINE11 11.85 10.57 - - - 16.33 17.95
ELITR-OFFLINE]2 9.29 7.76 - - - 16.33 17.95
ELITR-OFFLINE13 7.76 6.35 - - - 16.33 17.95
ELITR-OFFLINE14 7.37 6.54 - - - 16.33 17.95
PUBLIC-A 3.30 2.47 - - - 30.10 31.09
PUBLIC-B 10.79 9.85 - - - 21.54 23.59

Test Set Provenance

Only a limited amount of resources could have been invested in the preparations of the test set and the
test set thus build upon some existing datasets. The components of the test sets are:

Antrecorp®® (Machacek et al., 2019), a test set of up to 90-second mock business presentations given
by high school students in very noisy conditions. None of the speakers is a native speaker of
English (see the paper for the composition of nationalities) and their English contains many lexical,
grammatical and pronunciation errors as well as disfluencies due to the spontaneous nature of the
speech.

For the purposes of this task, we equipped Antrecorp with manual translations into Czech and
German. No MT system was used to pre-translate the text to avoid bias in automatic evaluation.

*®http://hdl.handle.net/11234/1-3023

33
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Because the presentations are very informal and their translation can vary considerably, we created
two independent translations into Czech. In the end, only the first one of them was used as the
reference, to keep BLEU scores across test set parts somewhat comparable.

Khan Academy?®’ is a large collection of educational videos. The speaker is not a native speaker of
English but his accent is generally rather good. The difficulty in this part of the test lies in the
domain and also the generally missing natural segmentation into sentences.

SAO is a test set created by ELITR particularly for this shared task, to satisfy the need of the Supreme
Audit Office of the Czech Republic. The test sets consists of 6 presentations given in English by
officers of several supreme audit institutions (SAI) in Europe and by the Europan Court of Auditors.
The speakers nationality (Austrian, Belgian, Dutch, Polish, Romanian and Spanish) affects their
accent. The Dutch file is a recording of a remote conference call with further distorted sound
quality.

The development set contained 2 other files from Antrecorp, one other file from the SAO domain and
it also included 4 files from the AMI corpus (Mccowan et al., 2005) to illustrate non-native accents. We
did not include data from AMI corpus in the test set because we found out that some participants trained
their (non-constrained) submissions on it.

For SAO and Antrecorp, our test set was created in the most straightforward way: starting with the
original sound, manual transcription was obtained (with the help of ASR) as a line-oriented plaintext.
The transcribers were instructed to preserve all words uttered® and break the sequence of words into
sentences in as natural way as possible. Correct punctuation and casing was introduced at this stage,
too. Finally, the documents were translated in Czech and German, preserving the segmentation into
“sentences”.

For the evaluation of SLT simultaneity, we force-aligned words from the transcript to the sound using a
model trained with Jasper (Li et al., 2019) and resorted to fully manual identification of word boundaries
in the few files where forced alignment failed.

Despite a careful curation of the dataset, we are aware of the following limitations. None of them are
too frequent or too serious but they still deserve to be mentioned:

* Khan Academy subtitles never had proper segmentation into sentences and manual correction of
punctuation and casing. The subtitles were supposedly manually refined but the focus was on their
presentation in the running video lecture, not on style and typesetting.

« Khan Academy contains many numbers (written mostly as numbers). For small numbers, both digits
and words are often equally suitable but automatic metrics treat this difference as a mistranslation
and no straightforward reliable normalization is possible either, so we did not apply any.

* Minor translation errors into German were seen in Khan Academy videos and in the “Belgian” SAO
file.

37http: //www.khanacademy.org/
3This decision is possibly less common in the ASR community but it is motivated by the subsequent translation step which
has the capacity to recover from disfluences as needed.

34
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Abstract

Information in speech signals is not evenly
distributed, making it an additional challenge
for end-to-end (E2E) speech translation (ST)
to learn to focus on informative features. In
this paper, we propose adaptive feature se-
lection (AFS) for encoder-decoder based E2E
ST. We first pre-train an ASR encoder and
apply AFS to dynamically estimate the im-
portance of each encoded speech feature to
ASR. A ST encoder, stacked on top of the
ASR encoder, then receives the filtered fea-
tures from the (frozen) ASR encoder. We take
LoDROP (Zhang et al., 2020) as the backbone
for AFS, and adapt it to sparsify speech fea-
tures with respect to both temporal and fea-
ture dimensions. Results on LibriSpeech En-
Fr and MuST-C benchmarks show that AFS fa-
cilitates learning of ST by pruning out ~84%
temporal features, yielding an average transla-
tion gain of ~1.3-1.6 BLEU and a decoding
speedup of ~1.4x. In particular, AFS reduces
the performance gap compared to the cascade
baseline, and outperforms it on LibriSpeech
En-Fr with a BLEU score of 18.56 (without
data augmentation).!

1 Introduction

End-to-end (E2E) speech translation (ST), a
paradigm that directly maps an audio to a foreign
text, has been gaining popularity recently (Duong
et al., 2016; Bérard et al., 2016; Bansal et al., 2018;
Di Gangi et al., 2019; Wang et al., 2019). Based on
the attentional encoder-decoder framework (Bah-
danau et al., 2015), it optimizes model parameters
under direct translation supervision. This end-to-
end paradigm avoids the problem of error propa-
gation that is inherent in cascade models where
an automatic speech recognition (ASR) model and
a machine translation (MT) model are chained to-
gether. Nonetheless, previous work still reports that

"We will release our source code at XXX.
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Figure 1: An example for motivation illustration. We plot the
amplitude and frequency spectrum of an audio (top), paired
with its time-aligned words and phonemes (bottom). Informa-
tion inside an audio is not uniformly distributed. We propose
to dynamically capture speech features corresponding to in-
formative signals (red rectangles) to improve ST.

E2E ST delivers inferior performance compared to
cascade methods (Niehues et al., 2019).

We study one reason for the difficulty of train-
ing E2E ST models, namely the uneven spread of
information in the speech signal, as visualized in
Figure 1, and the consequent difficulty of extract-
ing informative features. Features corresponding
to uninformative signals, such as pauses or noise,
increase the input length and bring in unmanage-
able noises for ST. This increases the difficulty of
learning (Zhang et al., 2019b; Na et al., 2019) and
reduces translation performance.

In this paper, we propose adaptive feature se-
lection (AFS) for ST to explicitly eliminate un-
informative features. Figure 2 shows the overall
architecture. We employ a pretrained ASR encoder
to induce contextual speech features, followed by
a ST encoder bridging the gap between speech and
translation modalities. AFS is inserted in-between
them to select a subset of features for ST encoding
(see red rectangles in Figure 1). To ensure that
the selected features are well-aligned to transcrip-
tions, we pretrain AFS on ASR. AFS estimates
the informativeness of each feature through a pa-
rameterized gate, and encourages the dropping of
features (pushing the gate to 0) that contribute little
to ASR. Intuitively, features irrelevant for ASR are
also unimportant for ST.
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Figure 2: Overview of our E2E ST model. AFS is inserted
between the ST encoder (blue) and a pretrained ASR encoder
(gray) to filter speech features for translation. We pretrain
AFS jointly with ASR and freeze it during ST training.

We base AFS on £yDROP (Zhang et al., 2020),
a sparsity-inducing method for encoder-decoder
models, and extend it to sparsify speech features.
The acoustic input of speech signals involves two
dimensions: temporal and feature, where the lat-
ter one describes the spectrum extracted from time
frames. Accordingly, we adapt LoDROP to spar-
sify encoder states along temporal and feature di-
mensions but using different gating networks. In
contrast to (Zhang et al., 2020), who focus on effi-
ciency and report a trade-off between sparsity and
quality for MT and summarization, we find that
sparsity also improves translation quality for ST.

We conduct extensive experiments with Trans-
former (Vaswani et al., 2017) on LibriSpeech En-Fr
and MuST-C speech translation tasks, covering 8
different language pairs. Results show that AFS
only retains about 16% of temporal speech features,
revealing heavy redundancy in speech encodings
and yielding a decoding speedup of ~1.4x. AFS
eases model convergence, and improves the transla-
tion quality by ~1.3—-1.6 BLEU, surpassing several
strong baselines. Specially, without data augmen-
tation, AFS narrows the performance gap against
the cascade approach, and outperforms it on Lib-
riSpeech En-Fr by 0.29 BLEU, reaching 18.56. We
compare against fixed-rate feature selection con-
firming that our adaptive feature selection offers
better translation quality.

2 Related Work

Speech Translation Pioneering studies on ST
used a cascade of separately trained ASR and MT
systems (Ney, 1999). Despite its simplicity, this
approach inevitably suffers from mistakes made
by ASR models, and is error prone. Research in
this direction often focuses on strategies capable of
mitigating the mismatch between ASR output and
MT input, such as representing ASR outputs with

lattices (Saleem et al., 2004; Mathias and Byrne,
2006; Zhang et al., 2019a; Beck et al., 2019), inject-
ing synthetic ASR errors for robust MT (Tsvetkov
et al., 2014; Cheng et al., 2018) and differentiable
cascade modeling (Kano et al., 2017; Anastasopou-
los and Chiang, 2018; Sperber et al., 2019).

In contrast to cascading, another option is to
perform direct speech-to-text translation. Duong
et al. (2016) and Bérard et al. (2016) employ the at-
tentional encoder-decoder model (Bahdanau et al.,
2015) for E2E ST without accessing any inter-
mediate transcriptions. E2E ST opens the way
to bridging the modality gap directly, but it is
data-hungry, sample-inefficient and often underper-
forms cascade models especially in low-resource
settings (Bansal et al., 2018). This led researchers
to explore solutions ranging from efficient neural
architecture design (Karita et al., 2019; Di Gangi
et al., 2019; Sung et al., 2019) to extra training
signal incorporation, including multi-task learn-
ing (Weiss et al., 2017; Liu et al., 2019b), sub-
module pretraining (Bansal et al., 2019; Stoian
et al., 2020; Wang et al., 2020), knowledge dis-
tillation (Liu et al., 2019a), meta-learning (Indurthi
et al., 2019) and data augmentation (Kocabiyikoglu
et al., 2018; Jia et al., 2019; Pino et al., 2019). Our
work focuses on E2E ST, but we investigate feature
selection which has rarely been studied before.

Speech Feature Selection Encoding speech sig-
nals is challenging as acoustic input is lengthy,
noisy and redundant. To ease model learning, previ-
ous work often selected features via downsampling
techniques, such as convolutional modeling (Di
Gangi et al., 2019) and fixed-rate subsampling (Lu
et al., 2015). Recently, Zhang et al. (2019b) and
Na et al. (2019) proposed dynamic subsampling
for ASR which learns to skip uninformative fea-
tures during recurrent encoding. Unfortunately,
their methods are deeply embedded into recur-
rent networks, hard to adapt to other architectures
like Transformer (Vaswani et al., 2017). Recently,
Salesky et al. (2020) have explored phoneme-level
representations for E2E ST, but this requires non-
trivial phoneme recognition and alignment.

Instead, we employ LoDROP (Zhang et al., 2020)
for AFS to dynamically retain informative speech
features, which is fully differentiable and indepen-
dent of concrete encoder/decoder architectures. We
extend £oDROP by handling both temporal and fea-
ture dimensions with different gating networks, and
apply it to E2E ST.
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3 Background: £,DROP

LoDROP provides a selective mechanism for
encoder-decoder models which encourages remov-
ing uninformative encoder outputs via a sparsity-
inducing objective (Zhang et al., 2020). Given a
source sequence X = {x1,2,...,%,}, LoDROP
assigns each encoded source state x; € R? with a
scalar gate g; € [0, 1] as follows:

LoDROP(x;) = gix;, (1)
with g; ~ HardConcrete(c;, 8, €), 2)

where «;, 3, € are hyperparameters of the hard con-
crete distribution (HardConcrete) (Louizos et al.,
2018; Bastings et al., 2019).

Note that the hyperparameter «; is crucial with
HardConcrete, it directly governs its shape. By
associating «;; with x; through a gating network:

loga; = x/ - w, 3)

LoDROP could schedule HardConcrete via «; to
put more probability mass at either 0 (i.e g; — 0)
orl(e g —1).we R? is a trainable parame-
ter. Intuitively, LoDROP controls the openness of
gate g; via oy so as to determine whether removing
(g; = 0) or retaining (g; = 1) the state x;.

LoDROP enforces sparsity by pushing the proba-
bility mass of HardConcrete towards 0, according
to the following penalty term:

Lo(X) = "1—plgi =0lai, B,e).  (4)

i=1

By sampling g; with reparameterization (Kingma
and Welling, 2013), £LoDROP is fully differentiable
and optimized with an upper bound on the objec-
tive: Lye + ALo(X), where A is a hyperparameter
affecting the degree of sparsity and Ly denotes
the maximum likelihood loss. The expected value
of g; is used during inference. £oDROP success-
fully prunes out 40-70% encoder outputs on MT
and summarization tasks, without compromising
generation quality (Zhang et al., 2020). We adapt
it to E2E ST.

4 Adaptive Feature Selection

One difficulty with applying encoder-decoder mod-
els to E2E ST is deciding how to encode speech
signals. In contrast to text where word boundaries
can be easily identified, the spectrum features of
speech are continuous, varying remarkably across

different speakers for the same transcript. In addi-
tion, redundant information, like pauses in-between
neighbouring words, can be of arbitrary duration at
any position as shown in Figure 1, while contribut-
ing little to translation. This increases the burden
and occupies the capacity of ST encoder, leading to
inferior performance (Duong et al., 2016; Bérard
et al., 2016). Rather than developing complex en-
coder architectures, we resort to feature selection
to explicitly clear out those uninformative speech
features.

Figure 2 gives an overview of our model. We
use a pretrained and frozen ASR encoder to extract
contextual speech features, and collect the informa-
tive ones from them via AFS before transmitting
to the ST encoder. AFS drops pauses, noise and
other uninformative features and retains features
that are relevant for ASR. We speculate that these
retained features are also the most relevant for ST,
and that the sparser representation simplifies the
learning problem for ST, for example the learning
of attention strength between encoder states and
target language (sub)words. Given a training tuple
(audio, source transcription, translation), denoted
as (X,Y, Z) respectively,” we outline the overall
framework below, including three steps:

— [ E2ESTwith AFS }———

1. Train ASR model with the following objective
and model architecture until convergence:

Z:ASR = 7]£MLE(Y|X) + “/’ECTC<Y|X)7 )
MASR _ pASR (K FASR (X)) ) (©)

2. Finetune ASR model with AFS for m steps:
LM = Lu(Y]X) + ALo(X), @)

MAFS _ pASR (Y-, F (EASR (X))) L ®

3. Train ST model with pretrained and frozen
ASR and AFS submodules until convergence:

£ = Lue(Z]X), ©)
MST = pST (Z, EST (ﬁASR (X))) . (10)

We handle both ASR and ST as sequence-to-
sequence problem with encoder-decoder models.
We use E*(-) and D*(-, -) to denote the correspond-
ing encoder and decoder respectively. F'(-) denotes
the AFS approach, and FE means freezing the
ASR encoder and the AFS module during train-

Note that our model only requires pair-wise training cor-
pora, (X,Y) for ASR, and (X, Z) for ST.
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ing. Note that our framework puts no constraint on
the architecture of the encoder and decoder in any
task, although we adopt the multi-head dot-product
attention network (Vaswani et al., 2017) for our
experiments.

ASR Pretraining The ASR model MASR (Eq.
6) directly maps an audio input to its transcription.
To improve speech encoding, we apply logarithmic
penalty on attention to enforce short-range depen-
dency (Di Gangi et al., 2019) and use trainable
positional embedding with a maximum length of
2048. Apart from Ly g, we augment the training
objective with the connectionist temporal classi-
fication (Graves et al., 2006, CTC) loss L¢rc as
in Eq. 5. Note n = 1 — . The CTC loss is ap-
plied to the encoder outputs, guiding them to align
with their corresponding transcription (sub)words
and improving the encoder’s robustness (Karita
etal., 2019). Following previous work (Karita et al.,
2019; Wang et al., 2020), we set 7y to 0.3.

AFS Finetuning This stage aims at using AFS
to dynamically pick out a subset of ASR encoder’s
outputs that are most relevant for ASR performance
(see red rectangles in Figure 1). We follow Zhang
et al. (2020) and place AFS in-between ASR’s en-
coder and decoder during finetuning (see F'(-) in
MAFS, Eq. 8). We exclude the CTC loss in the
training objective (Eq. 7) to relax the alignment
constraint and increase the flexibility of feature
adaptation. We use LoDROP for AFS in two ways.

AFS' The direct application of £oDROP on ASR
encoder results in AFS?, sparsifying encodings
along the temporal dimension {x; }}" ;:

F!(x;) = AFS'(x;) = g{xi,
with logal = xT - w!, an

gl ~ HardConcrete(al, 3, €),

where of is a positive scalar powered by a simple
linear gating layer, and w! € R? is a trainable
parameter of dimension d. g! is the temporal gate.
The sparsity penalty of AFS? follows Eq. 4:

Ly(X) = 1—plgf =0laf, B,e).  (12)
=1

AFS"/ In contrast to text processing, speech pro-
cessing often extracts spectrum from overlapping
time frames to form the acoustic input, similar to
the word embedding. As each encoded speech fea-
ture contains temporal information, it is reasonable

to extend AFS* to AFSH/, including sparsification
along the feature dimension {x; ; }?:1:

Y (x;) = AFSY (x;) = gix; 0 g/,
with log ol = Wf7 (13)
g]f.' ~ HardConcrete(af7 B,€),

where af € R estimates the weights of each fea-
ture, dominated by an input-independent gating
model with trainable parameter w/ € R%3 gf
is the feature gate. Note that o/ is shared for all
speech features. ® denotes element-wise multipli-
cation. AFSH/ reuses g!-relevant submodules in
Eq. 11, and extends the sparsity penalty £ in Eq.
12 as follows:

d
Lo (x) =L+ > 1-p(gl =0jal, B,e).
j=1

(14
We perform the finetuning by replacing (F, Lo)
in Eq. (8-7) with either AFS! (F*, L) or AFSH/
(F t.f s Ef)’f ) for extra m steps. We compare these
two variants in our experiments.

E2E ST Training We treat the pretrained ASR
and AFS model as a speech feature extractor, and
freeze them during ST training. We gather the
speech features emitted by the ASR encoder that
correspond to g¢ > 0, and pass them similarly as
done with word embeddings to the ST encoder. We
employ sinusoidal positional encoding to distin-
guish features at different positions. Except for the
input to the ST encoder, our E2E ST follows the
standard encoder-decoder translation model (MST
in Eq. 10) and is optimized with Ly ¢ alone as in
Eq. 9. Intuitively, AFS bridges the gap between
ASR output and MT input by selecting transcript-
aligned speech features.

5 Experiments

Datasets and Preprocessing We experiment
with two benchmarks: the Augmented LibriSpeech
dataset (LibriSpeech En-Fr) (Kocabiyikoglu et al.,
2018) and the multilingual MuST-C dataset (MuST-
C) (Di Gangi et al., 2019). LibriSpeech En-Fr is
collected by aligning e-books in French with En-
glish utterances of LibriSpeech, further augmented
with French translations offered by Google Trans-
late service. We use the 100 hours clean training

3Other candidate gating models, like linear mapping upon

mean-pooled encoder outputs, delivered worse performance
in our preliminary experiments.
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set for training, including 47K utterances to train
ASR models and double size for ST models after
concatenated with the Google translations. We re-
port results on the test set (2048 utterances) using
models selected on the dev set (1071 utterances).
MuST-C is built from English TED talks, covering
English—German (De), Spanish (Es), French (Fr),
Italian (It), Dutch (N1), Portuguese (Pt), Romanian
(Ro) and Russian (Ru) translation directions (8 in
total). We train ASR and ST models on the given
training set, containing ~452 hours with ~252K
utterances on average for each translation pair. We
adopt the given dev set for model selection and
report results on the common test set, whose size
ranges from 2502 (Es) to 2641 (De) utterances.

For all datasets, we extract 40-dimensional log-
Mel filterbanks with a step size of 10ms and win-
dow size of 25ms as the acoustic features. We ex-
pand these features with their first and second-order
derivatives, and stabilize them using mean subtrac-
tion and variance normalization. We stack the fea-
tures corresponding to three consecutive frames
without overlapping to the left, resulting in the final
360-dimensional acoustic input. For transcriptions
and translations, we tokenize and truecase all the
text using the Moses scripts.* We train subword
models (Sennrich et al., 2016) on each dataset with
a joint vocabulary size of 16K to handle rare words,
and share the model for ASR, MT and ST. We train
all models without removing punctuation.

Model Settings and Baselines We adopt the
Transformer architecture (Vaswani et al., 2017)
for all tasks, including MASR (Eq. 6), MAFS
(Eq. 8) and MST (Eq. 10). The encoder and de-
coder consist of 6 identical layers, each including
a self-attention sublayer, a cross-attention sublayer
(decoder alone) and a feedforward sublayer. We
employ the base setting for experiments: hidden
size d = 512, attention head 8 and feedforward
size 2048. We schedule learning rate via Adam
(B1 = 0.9,8, = 0.98) (Kingma and Ba, 2015),
paired with a warmup step of 4K. We apply dropout
to attention weights and residual connections with
arate of 0.1 and 0.2 respectively, and also add label
smoothing of 0.1 to handle overfitting. We train
all models with a maximum step size of 30K and a
minibatch size of around 25K target subwords. We
average the last 5 checkpoints for evaluation. We
use beam search for decoding, and set the beam
size and length penalty to 4 and 0.6, respectively.

*https://www.statmt.org/moses/

(a) Feature Gate Value (b) Temporal Sparsity Rate

Figure 3: Feature gate value and temporal sparsity rate as a
function of A on MuST-C En-De dev set. Larger A decreases
the gate value of g/ but without dropping any neurons, i.c.
feature sparsity rate 0%. By contrast, speech features are of
high redundancy along temporal dimension, easily inducing
high sparsity rate of ~85%.

We set e = —0.1, and 3 = 2/3 for AFS follow-
ing Louizos et al. (2018), and finetune AFS for an
additional m = 5K steps. We evaluate translation
quality with tokenized case-sensitive BLEU (Pap-
ineni et al., 2002), and report WER for ASR per-
formance without punctuation.

We compare our models with four baselines:

ST: A vanilla Transformer-based E2E ST model
of 6 encoder and decoder layers. Logarithmic
attention penalty (Di Gangi et al., 2019) is
used to improve the encoder.

ST + ASR-PT: We perform the ASR pretraining
(ASR-PT) for E2E ST. This is the same model
as ours (Figure 2) but without AFS finetuning.

Cascade: We first transcribe the speech input us-
ing an ASR model, and then passes the results
on to an MT model. We also use the logarith-
mic attention penalty (Di Gangi et al., 2019)
for the ASR encoder.

ST + Fixed Rate: Instead of dynamically select-
ing features, we replace AFS with subsam-
pling at a fixed rate: we extract the speech
encodings after every k positions.

5.1 Results on MuST-C En-De

We perform a thorough study on MuST-C En-De.
With AFS, the first question is its feasibility. We
start by analyzing the degree of sparsity in speech
features (i.e. sparsity rate) yielded by AFS, focus-
ing on the temporal sparsity rate #{9{=0}/n and the
feature sparsity rate #{g] =0}/d. To obtain different
rates, we vary the hyperparameter A in Eq. 7in a
range of [0.1,0.8] with a step size 0.1.

Results in Figure 3 show that large amount of
encoded speech features (> 59%) can be easily
pruned out, revealing heavy inner-speech redun-
dancy. Both AFS! and AFS*/ drop ~60% tempo-

Page 50 of 69




European Live Translator
D3.1: Report 1 on Spoken Language Translation

y\’\B

WER
BLEU
.

050 06

(a) ASR

(b) ST

Figure 4: ASR (WER|) and ST (BLEU?) performance as a
function of temporal sparsity rate on MuST-C En-De dev set.
Pruning out ~85% temporal speech features largely improves
translation quality and retains ~95% ASR accuracy.

ral features with A of 0.1, and enlarge this number
to > 85% when A > 0.5 (Figure 3b), remarkably
surpassing the sparsity rate reported by Zhang et al.
(2020) on text summarization (71.5%). In contrast
to rich temporal sparsification, we get a feature
sparsity rate of 0, regardless of A’s value, although
increasing \ decreases g/ (Figure 3a). This sug-
gests that selecting neurons from the feature dimen-
sion is harder. Rather than filtering neurons, the
feature gate g/ acts more like a weighting mech-
anism on them. In the rest of the paper, we use
sparsity rate for the temporal sparsity rate.

‘We continue to explore the impact of varied spar-
sity rates on the ASR and ST performance. Figure
4 shows their correlation. We observe that AFS
slightly degenerates ASR accuracy (Figure 4a), but
still retains ~95% accuracy on average; AFS:/
often performs better than AFS? with similar spar-
sity rate. The fact that only 15% speech features
successfully support 95% ASR accuracy proves the
informativeness of these selected features. These
findings echo with (Zhang et al., 2020), where they
observe a trade-off between sparsity and quality.

However, when AFS is applied to ST, we find
consistent improvements to translation quality by
> 0.8 BLEU, shown in Figure 4b. Translation qual-
ity on the development set peaks at 22.17 BLEU
achieved by AFS"/ with a sparsity rate of 85.5%.
We set A = 0.5 (corresponding to sparsity rate of
~85%) for all other experiments, since AFS! and
AFS"/ reach their optimal result at this point.

‘We summarize the test results in Table 1, where
we set k = 6 or k = 7 for ST+Fixed Rate with a
sparsity rate of around 85% inspired by our above
analysis. Our vanilla ST model yields a BLEU
score of 17.44; pretraining on ASR further en-
hances the performance to 20.67, significantly out-
performing the results of Di Gangi et al. (2019) by
3.37 BLEU. This also suggests the importance of

Model BLEU?T Speedup?
MT 29.69 -
Cascade 22.52 1.06x
ST 17.44 0.87x
ST + ASR-PT 20.67 1.00x

ST + Fixed Rate (k = 6)
ST + Fixed Rate (k = 7)

ST + AFS*
ST + AFS"/

21.14 (83.3%) 1.42x
20.87 (85.7%) 1.43x

21.57 (84.4%) 1.38x
22.38 (85.1%) 1.37x

Table 1: BLEU? and speedup? on MuST-C En-De test set.
A = 0.5. We evaluate the speedup on GeForce GTX 1080 Ti
with a decoding batch size of 16, and report average results
over 3 runs. Numbers in parentheses are the sparsity rate.

06 07
Temporal Sparsity Rate

Figure 5: Impact of k in fixed-rate subsampling on ST per-
formance on MuST-C En-De test set. Sparsity rate: *—1/k.
This subsampling underperforms AFS, and degenerates the
ST performance at suboptimal rates.

speech encoder pretraining (Di Gangi et al., 2019;
Stoian et al., 2020; Wang et al., 2020). We treat
ST w/ ASR-PT as our real baseline. We observe
improved translation quality with fixed-rate sub-
sampling, +0.47 BLEU at k = 6. Subsampling
offers a chance to bypass noisy speech signals and
reducing the number of source states makes learn-
ing translation alignment easier, but deciding the
optimal sampling rate is tough. Results in Figure 5
reveal that fixed-rate subsampling deteriorates ST
performance with suboptimal rates. By contrast,
the proposed AFS is data-driven, shifting the deci-
sion burden to the data and model themselves. As
aresult, AFS* and AFS% surpass ASR-PT by 0.9
BLEU and 1.71 BLEU, respectively, substantially
narrowing the performance gap compared to the
cascade baseline (-0.14 BLEU).

We also observe improved decoding speed: AFS
runs ~1.37x faster than ASR-PT. Compared to
the fixed-rate subsampling, AFS is slightly slower
which we ascribe to the overhead introduced by the
gating module. Surprisingly, Table 1 shows that
the vanilla ST runs slower than ASR-PT (0.87 x)
while the cascade model is slightly faster (1.06x).
By digging into the beam search algorithm, we
discover that ASR pretraining shortens the number
of steps in beam-decoding: 94 ASR-PT vs. 112
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Figure 6: ST training curves (MuST-C En-De dev set). ASR
pretraining significantly accelerates model convergence, and
feature selection further stabilizes and improves training. A =
0.5,k = 6.

—A— ST & ASR-PT
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Figure 7: BLEU as a function of training data size on
MuST-C En-De. We split the original training data into
non-overlapped five subsets, and train different models with
accumulated subsets. Results are reported on the test set.
Note that we perform ASR pretraining on the original dataset.
A=0.5,k=6.

vanilla ST (on average). The speedup brought by
cascading is due to the smaller English vocabulary
size compared to the German vocabulary when
processing audio inputs.

5.2 'Why (Adaptive) Feature Selection?

Apart from the benefits in translation quality, we
go deeper to study other potential impacts of (adap-
tive) feature selection. We begin with inspecting
training curves. Figure 6 shows that ASR pretrain-
ing improves model convergence; feature selection
makes training more stable. Compared to other
models, the curve of ST w/ AFS is much smoother,
suggesting its better regularization effect.

We then investigate the effect of training data
size, and show the results in Figure 7. Overall, we
do not observe higher data efficiency by feature
selection on low-resource settings. But instead, our
results suggest that feature selection delivers larger
performance improvement when more training data
is available. With respect to data efficiency, ASR
pretraining seems to be more promising (Figure
7, left) (Bansal et al., 2019; Stoian et al., 2020).
Compared to AFS, the fixed-rate subsampling suf-
fers more from small-scale training: it yields worse
performance than ASR-PT when data size < 100K,
highlighting better generalization of AFS.

In addition to model performance, we also look
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Figure 8: Histogram of the cross-attention weights received
per ST encoder output on MuST-C En-De test set. For each
instance, we collect attention weights averaged over different
heads and decoder layers following Zhang et al. (2020). Larger
weight indicates stronger impact of the encoder output on
translation. Feature selection biases the distribution towards
larger weights. A = 0.5,k = 6.

Duration Bin

(a) Duration Analysis (b) Position Analysis

Figure 9: The number of selected features vs. word duration
(left) and position (right) on MuST-C En-De test set. For
word duration, we align the audio and its transcription by
Montreal Forced Aligner (McAuliffe et al., 2017), and collect
each words’ duration and its corresponding retained feature
number. For position, we uniformly split each input into 50
pieces, and count the average number of retained features in
each piece. A = 0.5,k = 6.

into the ST model itself, and focus on the cross-
attention weights. Figure 8 visualize the attention
value distribution, where ST models with feature
selection noticeably shift the distribution towards
larger weights. This suggests that each ST encoder
output exerts greater influence on the translation.
By removing redundant and noisy speech features,
feature selection eases the learning of the ST en-
coder, and also enhances its connection strength
with the ST decoder. This helps bridge the modality
gap between speech and text translation. Although
fixed-rate subsampling also delivers distribution
shift similar to AFS, its inferior ST performance
compared to AFS corroborates the better quality of
adaptively selected features.

AFS vs. Fixed Rate We compare these two ap-
proaches by analyzing the number of retained fea-
tures with respect to word duration and temporal
position. Results in Figure 9a show that the under-
lying pattern behind these two methods is similar:
words with longer duration correspond to more
speech features. However, when it comes to tempo-
ral position, Figure 9b illustrates their difference:
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Model De Es Fr It NI Pt Ro Ru
(Di Gangi et al., 2019) 17.30  20.80 2690 16.80 18.80 20.10 1650  10.50
Transformer + ASR-PT*  21.77 2641 31.56 2146 2522 2684 20.53 14.31
BLEU? ST 17.44 2385 2843 19.54 2123 2255 17.66 12.10
ST + ASR-PT 20.67 2596 3224 2084 2327 24.83 19.94 13.96
Cascade 2252 2792 3453 2402 2674 2757 2261 16.13
ST + AFS’ 21.57 2678 3334 23.08 2468 26.13 21.73 15.10
ST + AFS"/ 2238  27.04 3343 2335 2505 2655 21.87 14.92
Temporal ST + AFS? 84.4% 84.5% 832% 849% 844% 844% 847% 84.2%
Sparsity Rate ST + AFSH/ 85.1% 84.5% 847% 849% 83.5% 85.1% 848% 84.7%
Speedup 1 ST + AFS' 1.38x  1.35x  1.50x 1.34x  1.54x  143x  1.59x  1.31x
P P ST + AFS"/ 1.37x  1.34x  1.50x  1.39x  142x  1.26x 146x 1.37x

Table 2: Performance over 8 languages on MuST-C dataset. *: results reported by the ESPNet toolkit (Watanabe et al., 2018),
where the hyperparameters of beam search are tuned for each dataset.

0 W0 200 30 40 50

Feature Dimension (d)

Figure 10: Tllustration of feature gate g/ with A\ = 0.5.

fixed-rate subsampling is context-independent, pe-
riodically picking up features; while AFS decides
feature selection based on context information. The
curve of AFS is more smooth, indicating that fea-
tures kept by AFS are more uniformly distributed
across different positions, ensuring the features’
informativeness.

AFS? vs. AFS®/  Their only difference lies at the
feature gate g/. We visualize this gate in Figure
10. Although this gate induces no sparsification, it
offers AFS®/ the capability of adjusting the weight
of each neuron. In other words, AFSH has more
freedom in manipulating speech features.

5.3 Results on MuST-C and LibriSpeech

Table 2 and Table 3 list the results on MuST-C and
LibriSpeech En-Fr, respectively.’ Over all tasks,
AFS!/AFS*/ substantially outperforms ASR-PT
by 1.34/1.60 average BLEU, pruning out 84.5%
temporal speech features on average and yielding
an average decoding speedup of 1.45x. Our model
narrows the gap against the cascade model to -0.8
average BLEU, where AFS surpasses Cascade on
LibriSpeech En-Fr, without using KD (Liu et al.,

SUnfortunately, comparing BLEU scores across papers is
not recommended due to differences in tokenization and cases.

Model BLEUT
LSTM + PT + MTL (Bérard et al., 2018) 13.40
LSTM + PT (Watanabe et al., 2018) 16.68
Transformer + PT + KD (Liu et al., 2019a) 17.02
TCEN-LSTM + PT (Wang et al., 2019) 17.05
Transformer + ASR-PT (Wang et al., 2020) 17.66
ST 14.32
ST + ASR-PT 17.05
Cascade 18.27
ST + AFS’ 18.33
ST + AFS/ BLEUT 18.56
ST + AFS' Temporal 84.7%
ST + AFS"/ Sparsity Rate 83.5%
ST + AFS! 1.84x
: Speed
ST + AFSH/ peedup] 1.78x

Table 3: Performance on LibriSpeech En-Fr. KD: knowledge
distillation. MTL: multi-task learning.

2019a) and data augmentation (Wang et al., 2020).

6 Conclusion and Future Work

In this paper, we propose adaptive feature selection
for E2E ST to handle redundant and noisy speech
signals. We insert AFS in-between the ST encoder
and a pretrained, frozen ASR encoder to filter out
uninformative features contributing little to ASR.
We base AFS on LoDROP (Zhang et al., 2020),
and extend it to modeling both temporal and fea-
ture dimensions. Results show that AFS stabilizes
training, improves translation quality and acceler-
ates decoding by ~1.4x with an average temporal
sparsity rate of ~84%. AFS successfully narrow
or even close the performance gap compared to
cascading models.

In the future, we will work on adapting AFS to
simultaneous speech translation.
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Abstract

Speech translation has traditionally been ap-
proached through cascaded models consisting
of a speech recognizer trained on a corpus of
transcribed speech, and a machine translation
system trained on parallel texts. Several recent
works have shown the feasibility of collapsing
the cascade into a single, direct model that can
be trained in an end-to-end fashion on a corpus
of translated speech. However, experiments
are inconclusive on whether the cascade or the
direct model is stronger, and have only been
conducted under the unrealistic assumption
that both are trained on equal amounts of data,
ignoring other available speech recognition
and machine translation corpora.

In this paper, we demonstrate that direct speech
translation models require more data to per-
form well than cascaded models, and although
they allow including auxiliary data through
multi-task training, they are poor at exploiting
such data, putting them at a severe disadvan-
tage. As a remedy, we propose the use of end-
to-end trainable models with two attention
mechanisms, the first establishing source speech
to source text alignments, the second modeling
source to target text alignment. We show that
such models naturally decompose into multi-
task—trainable recognition and translation tasks
and propose an attention-passing technique
that alleviates error propagation issues in a
previous formulation of a model with two
attention stages. Our proposed model outper-
forms all examined baselines and is able to
exploit auxiliary training data much more
effectively than direct attentional models.

1 Introduction

Speech translation takes audio signals of speech
as input and produces text translations as output.
Although traditionally realized by cascading an

automatic speech recognition (ASR) and a ma-
chine translation (MT) component, recent work
has shown that it is feasible to use a single
sequence-to-sequence model instead (Duong
et al., 2016; Weiss et al., 2017; Bérard et al.,
2018; Anastasopoulos and Chiang, 2018). An
appealing property of such direct models is that
we no longer suffer from propagation of errors,
where the speech recognizer passes an erroneous
source text to the machine translation component,
potentially leading to compounding follow-up
errors. Another advantage is the ability to train
all model parameters jointly.

Despite these obvious advantages, two prob-
lems persist: (1) Reports on whether direct models
outperform cascaded models (Fig. la,d) are in-
conclusive, with some work in favor of direct
models (Weiss et al., 2017), some work in favor of
cascaded models (Kano et al., 2017; Bérard et al.,
2018), and one work in favor of direct models
for two out of the three examined language pairs
(Anastasopoulos and Chiang, 2018). (2) Cascaded
and direct models have been compared under
identical data situations, but this is an unrealistic
assumption: In practice, cascaded models can be
trained on much more abundant independent ASR
and MT corpora, whereas end-to-end models
require hard-to-acquire end-to-end corpora of
speech utterances paired with textual translations.

Our first contribution is a closer investigation
of these two issues. Regarding the question of
whether direct models or cascaded models are
generally stronger, we hypothesize that direct
models require more data to work well, due to the
more complex mapping between inputs (source
speech) and outputs (target text). This would imply
that direct models outperform cascades when
enough data are available, but underperform in
low-data scenarios. We conduct experiments and
present empirical evidence in favor of this
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Figure 1: Conceptual diagrams for various speech trans-
lation approaches. Cascade (a) uses separate machine
translation and speech recognition models. The direct
model (d) is a standard attentional encoder-decoder
model. The basic 2-stage model (b) uses two attention
stages and passes source-text decoder states to the
translation component. Our proposed attention-passing
model (c) applies two attention stages, but passes con-
text vectors to the translation component for improved
robustness.

hypothesis. Next, for a more realistic comparison
with regard to data conditions, we train a direct
speech translation model using more auxiliary
ASR and MT training data than end-to-end data.
This can be implemented through multi-task train-
ing (Weiss et al., 2017; Bérard et al., 2018). Our
results show that the auxiliary data are beneficial
only to a limited extent, and that direct multi-
task models are still heavily dependent on the
end-to-end data.

As our second contribution, we apply a
two-stage model (Tu et al., 2017; Kano et al.,
2017) as an alternative solution to our problem,
hoping that such models may overcome the data
efficiency shortcoming of the direct model. Two-
stage models consist of a first-stage attentional
sequence-to-sequence model that performs speech
recognition and then passes the decoder states as
input to a second attentional model that performs
translation (Fig. 1b). This architecture is closer to
cascaded translation while maintaining end-to-
end trainability. Introducing supervision from
the source-side transcripts midway through the
model creates inductive bias that guides the com-
plex transformation between source speech and
target text through a reasonable intermediate
representation closely tied to the source text. The
architecture has been proposed by Tu et al. (2017)
to realize a reconstruction objective, and a similar
model was also applied to speech translation

(Kano et al., 2017) to ease trainability, although no
experiments under varying data conditions have
been conducted. We hypothesize that such a model
may help to address the identified data efficiency
issue: Unlike multi-task training for the direct
model that trains auxiliary models on additional
data but then discards many of the additionally
learned parameters, the two-stage model uses all
parameters of sub-models in the final end-to-end
model. Empirical results confirm that the two-
stage model is indeed successful at improving data
efficiency, but suffers from some degradation in
translation accuracy under high data conditions
compared with the direct model. One reason for
this degradation is that this model re-introduces
the problem of error propagation, because the sec-
ond stage of the model depends on the decoder
states of the first model stage which often contain
errors.

Our third contribution, therefore, is an attention-
passing variant of the two-stage model that, rather
than passing on possibly erroneous decoder states
from the first to the second stage, passes on only
the computed attention context vectors (Fig. Ic).
We can view this approach as replacing the early
decision on a source-side transcript by an early
decision only on the attention scores needed to
compute the same transcript, where the attention
scores are expectedly more robust to errors in
source text decoding. We explore several variants
of this model and show that it outperforms both
the direct model and the vanilla two-stage model,
while maintaining the improved data efficiency of
the latter. Through an analysis, we further observe
atrade-off between sensitivity to error propagation
and data efficiency.

2 Baseline Models

This section introduces two types of end-to-end
trainable models for speech translation, along with
a cascaded approach, which will serve as our
baselines. All models are based on the attentional
encoder-decoder architecture of Bahdanau et al.
(2015) with character-level outputs, and use the
architecture described in §2.1 as audio encoders.
The end-to-end trainable models include a direct
model and a two-stage model. Both are limited' by
the fact that they can only be trained on end-to-end

!Prior work noted that in severe low-resource situations
it may actually be easier to collect speech paired with
translations than transcriptions (Duong et al., 2016). How-
ever, we focus on well-resourced languages for which ASR

314
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data, which is much harder to obtain than ASR
or MT data used to train traditional cascades.’
§3 will introduce multi-task training as a way to
overcome this limitation.

2.1 Audio Encoder

Sequence-to-sequence models can be adopted for
audio inputs by directly feeding speech features
(here, Mel filterbank features) instead of word
embeddings as encoder inputs (Chorowski et al.,
2015; Chan et al., 2016). Such an encoder trans-
forms M feature vectors x;.); into L encoded
vectors ej.;, performing downsampling such
that L<M. We use an encoder architecture that
follows one of the variants described by Zhang
et al. (2017): We stack two blocks, each con-
sisting of a bidirectional long short-term memory
(LSTM), a network-in-network (NiN) projection
that downsamples by factor two, and batch nor-
malization. After the second block, we add a final
bidirectional LSTM layer. NiN denotes a simple
linear projection applied at every time step, per-
forming downsampling by concatenating pairs
of adjacent projection inputs. Because of space
constraints, we do not present detailed equations,
but refer interested readers to Zhang et al. (2017)
as well as to our provided code for details.

2.2 Direct Model

The sequence-to-sequence model with audio inputs
outlined above can be trained as a direct speech
translation model by using speech data as input
and the corresponding translations as outputs.
Such a model does not rely on intermediate ASR
output and is therefore not subject to error prop-
agation. However, the transformation from source
speech inputs to target text outputs is much more
complex than that of an ASR or MT system
taken individually, which may cause the model to
require more data to perform well.

To make matters precise, given L audio encoder
states e;.;, computed by the audio encoder as

and MT corpora exist and for which it is more realistic to
obtain good speech translation accuracy.

2As acase in point, the largest available speech translation
corpora (Post et al., 2013; Kocabiyikoglu et al., 2018) are an
order of magnitude smaller than the largest speech recognition
corpora (Cieri et al., 2004; Panayotov et al., 2015) (~ 200
hours vs 2000 hours) and several orders of magnitude smaller
than the largest machine translation corpora, e.g., those
provided by the Conference on Machine Translation (WMT).

315

described in §2.1, the direct model is computed
as

s; = LSTM ([Weyi-1;€i-1],8i-1; 0istm) (1)
c; = Attention (s;, €1.1,; Oan) 2)
8; = tanh (W [s;; ¢;] + bs) 3)

p (¥ | y<i,e1.) = SoftmaxOut (§;; Oow) . (4)

Here, W,, b,, and 0, are the trainable param-
eters, y; are output characters, and SoftmaxOut
denotes an affine projection followed by a softmax
operation. s; are decoder states with s initialized
to the last encoder state, and c; are attentional
context vectors with cy=0. In Equation 2, we
compute Attention(-)= ZJLZI a;je; with weights
aj; conditioned on e; and s;, parameterized by
Oa, and normalized via a softmax operation.

2.3 Two-Stage Model

As an alternative to the direct model, the two-stage
model uses a cascaded information flow while
maintaining end-to-end trainability. Our main
motivation for using this model is the potentially
improved data efficiency when adding auxiliary
ASR and MT training data (§3). This model is
similar to the architecture first described by Tu
et al. (2017). It combines two encoder-decoder
models in a cascade-like fashion, with the decoder
of the first stage and the encoder of the second
stage being shared (Fig. 2). In other words, while
a cascade would use the source-text outputs of
the first stage as inputs into the second stage,
in this model the second stage directly computes
attentional context vectors over the decoder states
of the first stage. The inputs of the two-stage model
are speech frames, the outputs of the first stage
are transcribed characters in the source language,
and the outputs of the second stage are translated
characters in the target language.

Again assuming L audio encoder states ej.r,
the first stage outputs of length N are computed
identically to equations 1-4, except that input
feeding (conditioning the decoding step on the
previous context vector) is not used in the first
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Figure 2: Basic two-stage model. Decoder states of the
first stage double as encoder states for the second stage.

stage decoder to keep components compatible for
multi-task training (§3.2):

S = LSTM (W5, 51 05) (9)
¢ = Attention (s}, e;.1; 055 ©)

g?l’C — tanh (W:rc [S;TC; C;TC] + b:l’c) (7)
P (U | y<i,evr)

= SoftmaxOut (8{"; 055 ®)

Next, the second stage proceeds similarly but uses
the stage 1 decoder states as input:

s}rg = LSTM ([We"gy;rfl; c}% 1} ,s‘ﬁ ¥ Hi;gm)
9

c}rg = Attention (s;.'g, sV 9;%) (10)

~trg trg trg, trg trg
S; = tanh (Ws [sj ;¢ ] + by ) (11)

[ \
P (4% L yesositv)

= SoftmaxOut <§‘;g; 93&) (12)

2.4 Cascaded Model

We finally utilize a traditional cascaded model as
a baseline, whose architecture is kept as similar to
the above models as possible in order to facilitate
meaningful comparisons. The cascade consists
of an ASR component and an MT component,
which are both attentional sequence-to-sequence
models according to equations 1-4, trained on the
appropriate data. The ASR component uses the
acoustic encoder of §2.1, and the MT model uses
a bidirectional LSTM with 2 layers as encoder.

3 Incorporating Auxiliary Data

The models described in §2.2 and §2.3 are trained
only on speech utterances paired with translations

(and transcripts in the case of §2.3), which is a
severe limitation. To incorporate auxiliary ASR
and MT data into the training, we make use of a
multi-task training strategy. Such a strategy trains
auxiliary ASR and MT models that share certain
parameters with the main speech translation model.
We implement multi-task training by drawing
several minibatches, one minibatch for each task,
and performing an update based on the accu-
mulated gradients across tasks. Note that this
results in a balanced contribution of each task.’

3.1 Multi-Task Training for the Direct
Model

Multi-task training for direct speech translation
models has previously been used by Weiss et al.
(2017) and Bérard et al. (2018), although not
for the purpose of adding additional training
utterances that are not shown to the main speech
translation task.* We distinguish five model com-
ponents: a source speech encoder, a source text
encoder (a two-layer bidirectional LSTM working
on character level), a source text decoder, a target
text decoder, and an attention mechanism that
we opt to share across all tasks. There are four
ways in which these components can be combined
into a complete sequence-to-sequence model (see
Figure 3), corresponding to the following four
tasks:

ASR: Combines source speech encoder, general-
purpose attention, source text decoder. This
is similar to the auxiliary ASR task used by
Weiss et al. (2017) and can be trained on
common ASR data.

MT: Combines source text encoder, general-
purpose-attention, target text decoder. The
addition of an MT task has been mentioned
by Bérard et al. (2018) and allows training
on common MT data.

ST: Combines source speech encoder, general-
purpose-attention, target text decoder. This
is our main task and requires end-to-end data
for training.

3We also experimented with a final fine-tuning phase on
only the main task (Niehues and Cho, 2017), but discarded
this strategy for lack of consistent gains.

4Note that Bansal et al. (2019) do experiment with
additional speech recognition data, although, differently from
our work, for purposes of cross-lingual transfer learning.
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source text decoder target text decoder

\ /
general-purpose attention

source speech encoder source text encoder

Figure 3: Direct multi-task model.

Auto-encoder (AE): Combines source text en-
coder, general-purpose attention, source text
decoder. The AE task can be trained on
monolingual corpora in the source language
and may serve to tighten the coupling be-
tween components and potentially improves
the parameters of the general-purpose atten-
tion model. We have observed slight improve-
ments by adding the AE task in preliminary
experiments and will therefore use it through-
out this paper.

3.2 Multi-Task Training for the
Two-Stage Model

Including an auxiliary ASR task is straight-
forward with the two-stage model by simply com-
puting the cross-entropy loss with respect to the
softmax output of the first stage, and dropping the
second stage.

The auxiliary MT task computes only the
second stage, replacing the inputs s{'; by states
e¥®, computed as:

e?sr — LSTM (Wesrcy;runscr’ e;r:;l; ]ssrlcm) . (13)

That is, instead of computing the second-
stage inputs using the first stage, we compute
these inputs through a conventional encoder that
encodes the reference transcript y{’v*" and uses
the same embeddings matrix and unidirectional
LSTM as the first stage decoder. Note that there
is no equivalent to the auxiliary auto-encoder task
of the direct multi-task model here.

Why might this architecture help to make better
use of auxiliary ASR and MT data? Note that in
the direct model only roughly half of the model
parameters are shared between the main task and
the ASR task, and likewise for main and MT
tasks (§3.1). Additional data would therefore only
have a rather indirect impact on the main task.
In contrast, in the two-stage model all parameters
of the auxiliary tasks are shared with the main
task and therefore have a more direct impact,
potentially leading to better data efficiency.
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Note that somewhat related to our multi-task
strategy, Kano et al. (2017) have decomposed
their two-stage model in a similar way to perform
pretraining for the individual stages, although not
with the goal of incorporating additional auxiliary
data.

4 Attention-Passing Model

We have so far described a direct model that has
the appealing property of avoiding error prop-
agation in a principled way but that may not be
particularly data-efficient, and have described a
two-stage model that addresses the latter dis-
advantage. Unfortunately, the two-stage model
re-introduces the error propagation problem into
end-to-end modeling, because the second stage
heavily depends on the potentially erroneous de-
coder states of the first stage. We therefore pro-
pose an improved attention-passing model in this
section that is less impacted by error propagation
issues.

4.1 Preventing Error Propagation

The main idea behind the attention-passing model
is to not feed the erroneous first-stage decoder
states to the second stage, but instead to pass
on only the context vectors that summarize the
relevant encoded audio at each decoding step. The
first stage decoder is unfolded as usual by using
discrete source-text representations, but the only
information exposed to the translation stage are
the per-timestep context vectors created as a by-
product of the decoding. Figure 4 illustrates this
idea. Intuitively, we expect this to help because
we no longer make an early decision on the
identity of the source-language text, but only on
the corresponding attentions. This is motivated by
our observation that speech recognition attentions
are sufficiently robust against decoding errors
(85.7).

Formally, the first stage remains unchanged
from equations 5-8. The context vectors ¢ then
form the input to the second stage:

X = LSTM (c™, x/%,; 657, ) as
ST — LSTM ([W;fgy?i; c}‘i} 878 91‘§fm>
(15)
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Figure 4: Attention-passing model.

c‘;g = Attention (S;-rg7 X‘f:gm 9;%) (16)

§;.rg = tanh (Ws”g [S_;-rg; c;"} + b;'g> 17
p (4 vy sisy)
= SoftmaxOut (§‘;g; Gfﬁ) (18)

4.2 Decoder State Drop-Out

Along with the modifications described in §4.1, we
introduce an additional block drop-out operation
(Ammar et al., 2016) on the decoder states, re-
placing equation 7 by

5 = tanh (W™ [BDrop {s}°} ; ¢}] + by®).

The block drop-out operation, denoted as BDrop,
replaces the whole vector by zero with a cer-
tain probability (here: 0.5). This results in the
context vectors c; becoming the only information
available to the output layer whenever the decoder
states are dropped out. The motivation for this is to
force the model to maximize the informativeness
of the context vectors, which are later relied upon
as sole inputs to the second stage.

4.3 Multi-Task Training

Similar to the basic two-stage model, the attention-
passing model as a whole is trained on speech-
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transcript-translation triplets, but can be decom-
posed into two sub-models that correspond to
ASR and MT tasks. In fact, the ASR task is
unchanged with the exception of the new
block dropout operation. The MT task is ob-
tained by replacing equation 14 by x;®
LSTM (Weyi™, x;,; 63 )—that is, by using the
transcript character embeddings as inputs instead
of the context vectors used when training the main
task. Note that the LSTMs in equations 5 and 14
are shared in order to have a match between stage
1 decoder and stage 2 encoder as with the basic
model.

4.4 Cross Connections

As a further extension to the attention-passing
model of §4.1, we can introduce cross connections
that concatenate the dropped-out first stage hidden
decoder states to the second-stage inputs encoder.
This causes equation 14 to be replaced by

X = (19)
LSTM (Affine [c}™; BDrop {s{“}] , x;; 0},

i—1 Vlstm

This extension moves the model closer to the
basic two-stage model, and the inclusion of the
context vectors and the block drop-out operation
on the hidden decoder states ensures that the
second stage decoder does not rely too strongly
on the first stage outputs.

4.5 Additional Loss

We further experiment with introducing an
additional loss aimed at making the LSTM inputs
between first stage decoder and second stage
encoder RNN more similarly. Recall that in our
attention-passing model, both RNNs share param-
eters (equations 5 and 14), so that similar inputs
at both times is desirable. The loss is defined as
follows:

Laga = HCEW - WcY?,rCHZ-

If combined with the cross connections
(§4.4), the formula is adjusted to L, =
|| Affine [c"*; BDrop {s{"}] — Weyi™||o. We did
not find it beneficial to apply a scaling factor
when adding this loss to the main cross-entropy

loss in our experiments.

5 Experiments

We conduct experiments on the Fisher and
Callhome Spanish-English Speech Translation
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Corpus (Post et al., 2013), a corpus of Spanish
telephone conversations that includes audio, tran-
scriptions, and translations into English. We use
the Fisher portion that consists of telephone con-
versations between strangers. The training data size
is 138,819 sentences, corresponding to 162 hours
of speech. ASR word error rates on this dataset are
usually relatively high because of the spontaneous
speaking style and challenging acoustics. From a
translation viewpoint, the data can be considered
as relatively easy with regard to both the topical
domain and particular language pair.

Our implementation is based on the xnmt
toolkit.’> We use the speech recognition recipe as
a starting point, which has previously been shown
to achieve competitive ASR results (Neubig et al.,
2018).

The vocabulary consists of the common char-
acters appearing in English and Spanish, apos-
trophe, whitespace, and special start-of-sequence
and unknown-character tokens. The same vocab-
ulary is used on both encoder (for the MT auxiliary
task) and decoder sides. We set the batch size
dynamically depending on the input sequence size
such that the average batch size is 24 sentences.
We use Adam (Kingma and Ba, 2014) with initial
learning rate of 0.0005, decayed by 0.5 when the
validation BLEU score did not improve over 10
check points initially and 5 check points after the
first decay. We initialize attention-passing models
using weights from a basic two-stage model trained
on the same data.

Following Weiss et al. (2017), we lowercase
texts and remove punctuation. As speech features,
we use 40-dimensional Mel filter bank features
with per-speaker mean and variance normaliza-
tion. We exclude a small number of utterances
longer than 1500 frames from training to avoid
running out of memory. The encoder-decoder at-
tention is MLP-based, and the decoder uses a
single LSTM layer.” Source text encoders for
the multi-task direct model and the cascaded
models use two LSTM layers. The number of
hidden units is 128 for the encoder-decoder

Shttps://github.com/neulab/xnmt.

Code and configuration files can be found at http://
www.msperber.com/research/tacl-attention-
passing/.

"Weiss et al. (2017) report improvements from deeper
decoders, but we encountered stability issues and therefore
restricted the decoder to a single layer.
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Training sents. Cascade Direct model
139k 32.45 35.30
69k 26.52 24.68
35k 16.84 14.91
14k 6.59 6.08

Table 1: BLEU scores (4 references) on the Fisher/
Test for various amounts of training data. The
direct (multi-task) model performs best in the full
data condition, but the cascaded model is best in
all reduced conditions.

attention MLP, 64 for target character embed-
dings, 256 for the encoder LSTMs in each
direction, and 512 elsewhere. The model uses
variational recurrent dropout with probability
0.3 and target character dropout with probability
0.1 (Gal and Ghahramani, 2016). We apply label
smoothing (Szegedy et al., 2016) and fix the tar-
get embedding norm to 1 (Nguyen and Chiang,
2018). We use beam search with beam size 15 and
polynomial length normalization with exponent
153

All BLEU scores are computed on Fisher/Test
against 4 references.

5.1 Cascaded vs. Direct Models

We first wish to shed light on the question of
whether cascaded or direct models can be expected
to perform better. This question has been inves-
tigated previously (Weiss et al., 2017; Kano et al.,
2017; Bérard et al., 2018; Anastasopoulos and
Chiang, 2018), but with contradictory findings.
We hypothesize that the increased complexity of
the direct mapping from speech to translation
increases the data requirements of such models.
Table 1 compares the direct multi-task model
(§3.1) against a cascaded model with identical
architecture to the respective ASR and MT sub-
models of the multi-task model. The direct model
is trained with multi-task training on the auxiliary
ASR, MT, and AE tasks on the same data that
outperformed single-task training considerably in
preliminary experiments. As can be seen, the direct
model outperforms the traditional cascaded setup
only when both are trained on the full data, but not
when using only parts of the training data. This

8For two-stage and attention-passing models, we apply
beam search only for the second stage decoder. We do not
use the two-phase beam search of Tu et al. (2017) because of
its prohibitive memory requirements.
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Model BLEU
Cascade 32.45
Direct 35.30
Basic two-stage 34.36
APM 35.31
APM + cross connections 36.51
APM + cross conn. + additional loss 36.70
Best APM w/o block dropout 36.04

Table 2: Results for cascaded and multi-task
models under full training data conditions.

provides evidence in favor of our hypothesis and
indicates that direct end-to-end models should be
expected to perform strongly only in a case where
enough training data is available.

5.2 Two-Stage Models

Next, we investigate the performance of the two-
stage models, for both the basic variant (§3.2)
and our proposed attention-passing model (§4).
Again, all models are trained in a multi-task fashion
by including auxiliary ASR and MT tasks based
on the same data. Table 2 shows the results. The
basic two-stage model performs in between the
direct and cascaded models from §5.1. APM,
the attention-passing model of §4.1 which is
designed to circumvent the negative effects of
error propagation, outperforms the basic variant
and performs similarly to the direct model. The
APM extensions (§4.4, §4.5) further improved the
results, with the best model outperforming the di-
rect model by 1.40 BLEU points and the basic
two-stage model by 2.34 BLEU points absolute.
The last row in the table confirms that the block
dropout operation contributed to the gains: Re-
moving it led to a drop by 0.66 BLEU points.

5.3 Data Efficiency: Direct Model

Having established results in favor of our pro-
posed model on the full data, we now examine
the data efficiency of the different models. Our
experimental strategy is to compare model per-
formance (1) when trained on the full data, (2)
when trained on partial data, and (3) when trained
on partial speech-to-translation data but full aux-
iliary (ASR+MT) data.’

% An alternative experimental strategy is to train on the full
data and then add auxiliary data from other domains to the

40
T
5

3
220
N
B
2 10 --- Cascade (full data)
Direct model: full aux data, partial e2e data
0 Direct model: partial aux+e2e data
139k 69k 35k 14k

Size of partial training data (sentences)

Figure 5: Data efficiency for the direct (multi-task)
model, compared against cascade on full auxiliary
data.

Figure 5 shows the results, comparing the
cascaded model against the direct model trained
under conditions (1), (2), and (3).!° Unsurpris-
ingly, the performance of the direct model trained
on partial data declines sharply as the amount of
data is reduced. Adding auxiliary data through
multi-task training improves performance in all
cases. For instance, in the case of 69k speech-
to-translation instances, adding the full auxiliary
data helps to reach the accuracy of the cascaded
model. However, this is already somewhat dis-
appointing because the end-to-end data, which is
not available to the cascaded model, no longer
yields an advantage. Moreover, reducing the end-
to-end data further reveals that multi-task training
is not able to close the gap to the cascade. In the
scenario with 35k end-to-end instances and full
auxiliary data, the direct model underperforms the
cascade by 9.14 BLEU points (32.50 vs. 23.36),
despite being trained on more data. The unsatis-
factory data efficiency in this controlled ablation
study strongly indicates that the direct model will
also fall behind a cascade that is trained on large
amounts of external data. This claim is verified in
§5.5.

5.4 Data Efficiency: Two-Stage Models

We showed that the direct model is poor at
integrating auxiliary data and heavily depends
on sufficient amounts of end-to-end training data.

training. We pursue this strategy in §5.5 as a more realistic
scenario, but point out several problems that lead us to not
use this as our main approach: Adding external auxiliary
data (1) leads to side-effects through domain mismatch and
(2) severely limits the number of experiments that we can
conduct because of the considerably increased training time.

10Note that the above hyper-parameters were selected for
best full-data performance and are not re-tuned here.
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40
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Cascade (full aux data)
Attention-passing (APM)
17.5 APM + cross conn. + add. loss
1} Basic 2-stage
10 <> Direct model

139k 69k 35k 14k

BLEU (4 references)

Size of end-to-end training data (sentences)

Figure 6: Data efficiency across model types. All
models use full auxiliary data through multi-task
training.

How do two-stage models behave with regard to
this data efficiency issue? Figure 6 shows that
both the basic two-stage model and the best APM
perform reasonably well even when having seen
much less end-to-end data. We can explain this
by noticing that these models can be naturally
decomposed into an ASR sub-model and an MT
sub-model, while the direct model needs to add
auxiliary sub-models to support multi-task train-
ing. Interestingly, the attention-passing model with-
out cross-connections does better than the direct
model with regard to data efficiency, but falls
behind the basic and best proposed two-stage
models. This indicates that access to ASR labels in
some form contributes to favorable data efficiency
of speech translation models.

5.5 Adding External Data

Our approach for evaluating data efficiency so
far has been to assume that end-to-end data
are available for only a subset of the available
auxiliary data. In practice, we can often train ASR
and MT tasks on abundant external data. We there-
fore run experiments in which we use the full
Fisher training data for all tasks as before, and
add OpenSubtitle!! data for the auxiliary MT
task. We clean and normalize the Spanish—-English
OpenSubtitle 2018 data (Lison and Tiedemann,
2016) to be consistent with the employed Fisher
training data by lowercasing and removing punc-
tuation. We apply a basic length filter and obtain
61 million sentences. During training, we include
the same number of sentences from in-domain and
out-of-domain MT tasks in each minibatch in order
to prevent degradation due to domain mismatch.

http://www.opensubtitles.org/.
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Model Fisher  Fisher+OpenSub
Cascade 3245 34.58 (+6.2% rel.)
Direct model 3530 36.45 (+3.2% rel.)
Basic two-stage  34.36  36.91 (+6.9% rel.)
Best APM 36.70  38.81 (+5.4% rel.)

Table 3: Adding auxiliary OpenSubtitles MT data
to the training. The two-stage models benefit
much more strongly than the direct model, with
our proposed model yielding the strongest overall
results.

Our models converged before a full pass over the
OpenSubtitle data, but needed between two and
three times more steps than the in-domain model
to converge.

Table 3 shows that all models were able to
benefit from the added data. However, when exam-
ining the relative gains we can see that both the
cascaded model and the models with two attention
stages benefitted about twice as much from the
external data as the direct model. In fact, the
basic two-stage model now slightly surpasses
the direct model, and the best APM is ahead of
the basic two-stage model by almost the same
absolute difference as before (2.36 BLEU points).
The superior relative gains show that our findings
from §5.3 and §5.4, namely, that two-stage models
are much more efficient at exploiting auxiliary
training data, generalizes to the setting in which
large amounts of out-of-domain data are added
to the MT task. Out-of-domain data are often
much easier to obtain, and we can therefore con-
clude that the proposed approach is preferable
in many practically relevant situations. Because
these experiments are very expensive to conduct,
we leave experiments with external ASR data for
future work.

5.6 Error Propagation

To better understand the impact of error propaga-
tion, we analyze how improved or degraded ASR
labels impact the translation results. This exper-
iment is applicable to APM, the two-stage model
and the cascade, but not to the direct model which
does not compute intermediate ASR outputs. We
analyze three different settings: using the standard
decoded ASR labels, replacing these labels with
the gold labels, or artificially degrading the de-
coded labels by randomly introducing 10% of
substitution, insertion, and deletion noise (Sperber
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Labels Gold Decod. Perturbed

Cascade 58.15 (+44%) 32.45 25.67 (-26%)
B2S 56.60 (+39%) 34.36  28.81 (-19%)
APM 40.70 (+13%) 35.31  31.96 (-10%)
+cross  58.29 (+37%) 36.70  30.48 (-20%)

Table 4: Effect of altering the ASR labels for
different models as a measure for robustness against
error propagation. We compare results for the
cascade, the basic two-stage model (B2S), and APM
without and with cross connections. Percentages
are relative to the results for unaltered (decoded)
ASR labels.

et al., 2017). Intuitively, models that suffer from
error propagation issues are expected to rely most
heavily on these intermediate labels and would
therefore be most impacted by both degraded and
improved labels.

Table 4 shows the results. Unsurprisingly, the
cascade responds most strongly to improved or
degraded noise, confirming that it is severely
impacted by error propagation. The APM, which
does not directly expose the labels to the trans-
lation sub-model, is much less impacted. How-
ever, the impact is still more significant than
perhaps expected, suggesting that improved atten-
tion models that are more robust to decoding errors
(Chorowski et al., 2015; Tjandra et al., 2017) may
serve to further improve our model in the future.
Note that the APM benefits poorly from gold ASR
labels, which is expected because gold labels only
improve the ASR alignments and by extension the
passed context vectors, but these are quite robust
against decoding errors in the first place.

The basic two-stage model is impacted signif-
icantly, although less strongly than the cascade, in
line with our claim that such models are subject
to error propagation despite being end-to-end train-
able. Note that it falls behind the cascade for
gold labels, despite both models being seemingly
identical under this condition. This can be explained
by the cascaded model’s use of beam search and
greater number of encoder layers.

Somewhat contrary to our expectations, APM
with cross connections appears equally subject to
error propagation despite the block dropout on
these connections, displaying the same accuracy
gains across the three different settings. This sug-
gests future explorations toward model variants
with an even better trade-off between overall accu-

Luondivers idad/(

Figure 7: ASR attentions when force-decoding the
oracle transcripts.

d e . que Ld i oa (k)

.edu i ar

Figure 8: ASR attentions after regular decoding.

racy, data efficiency, and amount of degradation
due to error propagation.

5.7 Robustness of ASR Attentions

The attention-passing model was motivated by
the assumption that attention scores are relatively
robust against recognition errors. We perform a
qualitative analysis to validate this assumption.
Figure 7 shows the first-stage attention matrix
when force-decoding the reference transcript, and
Figure 8 shows the same for regular decoding,
which for this utterance produced significant errors.
Despite the errors, we can see that the attention
matrices are very similar. We manually inspected
the first 100 test attention matrices and confirm
that this behavior occurs very consistently. Further
quantitative evidence is given in §5.6, which
showed that the attention-passing model is more
resistent to error propagation than the other
models.

6 Prior Work

Model architectures similar to what we have
referred to as the basic two-stage model have first
been used by Tu et al. (2017) for a reconstruction
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task, where the first stage performs translation
and the second stage attempts to reconstruct the
original inputs based on the outputs of the first
stage. A second variant of a similar architecture
are Xia et al. (2017)’s deliberation networks,
where the second stage refines or polishes the
outputs of the first stage. For our purposes, the
first stage performs speech recognition, a natural
intermediate representation for the speech trans-
lation task, corresponding to the second stage
output. Toshniwal et al. (2017) explore a different
way of lower-level supervision during training of
an attentional speech recognizer by jointly training
an auxiliary phoneme recognizer based on a lower
layer in the acoustic encoder. Similarly to the dis-
cussed multi-task direct model, this approach
discards many of the learned parameters when
used on the main task and consequently may also
suffer from data efficiency issues.

Direct end-to-end speech translation models
were first used by Duong et al. (2016), although
the authors did not actually evaluate translation
performance. Weiss et al. (2017) extended this
model into a multi-task model and report excel-
lent translation results. Our baselines do not match
their results, despite considerable efforts. We note
that other research groups have encountered sim-
ilar replicability issues (Bansal et al., 2018), ex-
planations include the lack of a large GPU cluster
to perform ASGD training, as well as to explore
an ideal number of training schedules and other
hyper-parameter settings. Bérard et al. (2018) ex-
plored the translation of audio books with direct
models and report reasonable results, but do not
outperform a cascaded baseline. Kano et al. (2017)
have first used a basic two-stage model for
speech translation. They use a pretraining strat-
egy for the individual sub-models, related to our
multi-task approach, but do not attempt to inte-
grate auxiliary data. Moreover, the authors only
evaluated the translation of synthesized speech,
which greatly simplifies training and may not
lead to generalizable conclusions, as indicated
by the fact that they were actually able to out-
perform a translation model that used the gold
transcripts as input. Anastasopoulos and Chiang
(2018) conducted experiments on low-resource
speech translation and used a triangle model that
can be seen as a combination of a direct model
and a two-stage model, but is not easily trainable
in a multi-task fashion. It is therefore not a suit-
able choice for exploiting auxiliary data in or-
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der to compete with cascaded models under
well-resourced data conditions. Finally, contem-
poraneous work explores transferring knowledge
from high-resource to low-resource languages
(Bansal et al., 2019).

7 Conclusion

This work explored direct and two-stage models
for speech translation with the aim of obtaining
models that are strong, not only in favorable data
conditions, but are also efficient at exploiting
auxiliary data. We started by demonstrating that
direct models do outperform cascaded models,
but only when enough data is available, shedding
light on inconclusive results from prior work.
We further showed that these models are poor
at exploiting auxiliary data, making them a poor
choice in realistic situations. We were motivated
to use two-stage models by their ability to over-
come this shortcoming of the direct models, and
found that two-stage models are in fact more
data-efficient, but suffer from error propagation
issues. We addressed this by introducing a novel
attention-passing model that alleviates error prop-
agation issues, as well as several model variants.
The best proposed model outperforms all other
tested models and is much more data efficient
than the direct model, allowing this model to com-
pete with cascaded models even under realistic
assumptions with auxiliary data available. Anal-
ysis showed that there seems to be a trade-off
between data efficiency and error propagation.
Avenues for future work include testing better
ASR attention models; adding other types of ex-
ternal data such as ASR data, unlabeled speech,
or monolingual texts; and exploring further model
variants.
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