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1 Executive Summary
This deliverable summarizes the progress in WP4 Multi-Lingual MT during the first year of the
project. The work package consists of 5 tasks, three of which are running during the first year.

T4.1 Baseline MT Models was planned and carried out during the first 6 months of the
project. It provided MT systems to the rest of the main processing pipeline, so that
intergration and technical testing could start soon. More details are in Section 2.

T4.2 Document-Level Translation is a research goal somewhat more independent of the re-
maining tasks. The aim is to substantially improve the practice of handling document-level
context across MT processing stages: training, translation and evaluation. In Section 3,
we report on our progress in all three aspects: several separate means of evaluation with
more or less conclusive results as well as a post-processing strategy to improve document-
level coherence.

T4.3 Multi-Target Translation explores the setup most needed for ELITR central event,
the EUROSAI congress where a single speech needs to be translated into up to 43 target
languages. We report on our baseline massively-multilingual system and on our explo-
ration of the trade-off between the number of languages covered in a single system vs. the
loss in translation quality. These experiments proved to be more time-consuming than
expected and we will continue with them also in year 2 of the project.

T4.4 Multi-Source Translation aims to improve translation quality by considering other
language versions of the same content. The task is scheduled to start in year 2 and can
consider both written or spoken multi-source. As preparatory steps ahead of time, we
have begun gathering data from training lessons of interpreters to assess if multi-source
could be applied in the ELITR setup of live conference interpretation. More details are
in Section 5.

T4.5 Flexible Multi-Lingual MT is planned for year 3 of the project.
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2 Task T4.1 Baseline MT Models (CUNI, UEDIN, KIT)
Using the ELITR OPUS Corpus described in Deliverable 1.1, UEDIN has trained baselines
for all EU translation directions and a majority of EUROSAI translation directions in the
form of a massively multilingual MT model (Aharoni et al., 2019). The dataset is ‘English-
centric,’ meaning that all sentence pairs include English on either the source or the target side.
Translation for pairs not including English is therefore zero-shot or must be pivoted through
English.

We used scripts from the Moses toolkit (Koehn et al., 2007) to normalize, tokenize, and
truecase the data. We used subword-nmt1 to segment the text into subword units using the
byte pair encoding (BPE) algorithm (Sennrich et al., 2016) with 40,000 merge operations.
Following Johnson et al. (2017), we prepended a tag to each source sentence to indicate the
target language. For instance, in an English-Czech sentence pair, the first token of the source
sentence is <2cs>.

For training and inference we used the Marian toolkit (Junczys-Dowmunt et al., 2018). Our
model is a Transformer, configured using the ‘base’ hyperparameters (Vaswani et al., 2017). We
used a multilingual validation set containing 200 sentence pairs (100 into English and 100 out
of English) for each language pair covered by the dataset. This amounts to 39 · 200 = 7800
test sentence pairs. Training was stopped when the validation set cross entropy had failed to
improve for 10 consecutive validation points.

Source
Target cs de en es fr it ru
ar 5.2 4.4 9.2 5.4 4.9 5.7 4.3
cs - 11.4 22.4 6.9 9.6 10.4 12.0
de 12.2 - 22.0 10.6 9.8 9.6 9.7
en 33.5 29.0 - 33.8 28.2 33.4 27.2
es 11.2 15.6 33.5 - 20.5 20.0 14.5
fr 14.2 12.8 25.5 17.2 - 15.5 12.7
it 14.7 13.1 30.2 18.7 16.3 - 11.9
nl 14.3 15.2 25.3 15.0 13.1 13.3 12.3
pt 17.7 17.0 38.5 25.8 19.6 20.7 14.8
ru 13.4 10.7 18.3 11.9 12.0 11.0 -
Average 15.2 14.4 25.0 16.1 14.9 15.5 13.3

Table 1: Bleu scores for translation into the nine target languages in the News Commentary
v14 test set. The seven source languages are the languages supported by ASR and intended
for deployment. The results are comparable within a given target language and we highlight
in bold the best result in each row. It is not a big surprise that English is generally the best
source, although Bleu cannot reliably assess subtle properties such as the preservation of the
gender.

We evaluated the system using the News Commentary v14 test set (described in Deliverable
1.2). Table 1 gives average Bleu scores for the 10 target languages covered by the test set when
translating out of the seven ASR-supported source languages. These results serve as baselines
for systems developed for deployment as part of the ELITR pipeline.

For selected language pairs, we also trained dedicated bilingual models to measure the quality
difference between massively multilingual and bilingual models. Table 2 gives multilingual Bleu
scores for out-of-English translation for all language pairs covered by the News Commentary
v14 test set as well as bilingual scores for the dedicated models. Our baseline results show that
our multilingual systems, while enabling the coverage of many translation directions, still trail
behind dedicated bilingual models in terms of quality, and work on other tasks (T4.3/4.4/4.5)
has begun to close this gap.

1https://github.com/rsennrich/subword-nmt
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Target
System ar cs de es fr it nl pt ru
Multilingual 9.2 22.4 22.0 33.5 25.5 30.2 25.3 38.5 18.3
Bilingual 16.6 29.1 27.5 - - - - - 20.7

Table 2: Bleu scores for individual target languages when translating out of English on the
News Commentary v14 test set.

3 Task T4.2 Document-Level Machine Translation (CUNI, UEDIN)
Task 4.2 aims at improved handling of document-level phenomena in MT practice for evaluation,
training and translation.

In Section 3.1, we describe the test suites we prepared and used in WMT19. Section 3.2
outlines the test suite for 2020 which is in preparation and finally, Section 3.3 presents UEDIN
and CUNI techniques for improved translation.

3.1 WMT19 Document Level Test Suites
CUNI in cooperation with the Supreme Audit Office of the Czech Republic (SAO) processsed
multiple audit reports which were published on SAO’s website and other supreme audit institu-
tions. These selected audit reports always had always several language variants. Additionally,
we included one document sample from the domain of agreements in the test suite. The data
was cleaned and organised in a suitable form for a WMT19 test suite. The source texts were
then distributed to all WMT19 News Task participants and thus translated by MT systems
participating in the shared task.

Since this test suite had two different parts, we used two different approaches for the eval-
uation. As for the part of audit reports, we have complemented an automatic evaluation with
a manual evaluation carried out by audit experts. In the case of the sample agreement, the
evaluation was fully manual.

In the extensive manual annotation of the MT outputs participating in the shared task,
our annotators identified types of translation errors related to document-level translation. The
results document that recent NMT systems achieved such a high level of translation quality
that it becomes difficult or impossible to evaluate them on the basis of a simple comparison
with a single reference translation.

On the other hand, at least one type of documents is mishandled catastrophically by current
MT system, namely documents defining their own fixed terminology. A prime example are
formal agreements. In the coming months, we plan to focus on this domain, constructing a new
test suite for 2020 focused on this type of inputs, see below.

The details about the 2019 test suite were published in the respective WMT19 paper by
Vojtěchová et al. (2019).

The test suite itself has been made available as one of public ELITR repositories at github:

https://github.com/ELITR/wmt19-elitr-testsuite

Another extensive annotation of document-level phenomena was carried out in Rysová et al.
(2019). Here the focus was on news-style sentences from the WSJ section of the Penn Treebank
(where explicit discourse annotation exists), specifically on discourse connectives and their al-
ternative lexicalizations. Similarly to the audit domain above, the results indicated again that
the current quality of MT is in general high enough so that the comparison with a single ref-
erence translation becomes non-discerning. In fact, in some cases the reference translation was
scored lower because it was not adhering to wording of the source as the MT systems did. Fur-
thermore, this evaluation did not show any benefit from the few MT systems that were trained
with some cross-sentential context taken into account.
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3.2 A Testsuite on Agreements in Preparation
In the new test suite, we will focus on several types of agreements, namely lease and sublease
agreements and purchase contracts of cars and real estate. We have collected 30 Czech examples
in those four categories. We will try to get a comparable number of English agreements, too,
but so far we were unsuccessful.

Given the experience with the WMT19 SAO test suite, where a single reference translation
prepared beforehand proved insufficient because it did not account for multiple correct trans-
lations of domain-specific terminology, we did not plan to provide reference translations for
the agreements. Instead, we wanted to mimic our strategy used for the sublease agreement in
the 2019 test suite, i.e. to identify “markables” in the source documents and, once the candi-
date translations are collected, check if the translations of these “markables” are correct and
consistent within the given candidate.

However, when we tried this approach on the 30 new agreements, we realised that it will
not be possible due to an overhelming number of specific terms, which are furthermore different
for each agreement category. In other words, it is not possible to identify “markables” before
knowing at least partially the set of candidate translations.

Therefore, our current plan is to use the strategy briefly described in Section 4.3 of Popel
et al. (2019), i.e. to automatically list source terms that have multiple target-side counterparts
across and within individual candidate translations and manually validate which of these trans-
lations are (a) acceptable on their own, and (b) in accordance with other lexical choices within
the given candidate translation.

This approach starts with collecting a number of candidate translation so we will definitely
submit our new test suite to WMT20. Note that up until now, we have source documents in
Czech, so we need MT systems participating in translation from Czech to English. We double
checked with WMT organizers that this direction will not be omitted as it was in WMT19.

3.3 Better Document-Level Evaluation and Translation
UEDIN is investigating better models for document-level MT, and their automatic evalua-
tion. Voita et al. (2019b), published at ACL, makes contributions in both aspects. In terms
of modeling, we propose a two-pass translation process where a first-pass model, trained on
sentence-level parallel data, produces a baseline translation, which a context-aware second-pass
model then refines. This two-pass strategy has the advantage of allowing training with a mix of
sentence-level and document-level training data. For evaluation, we have produced test sets for
contrastive evaluation, similar to those by Bawden et al. (2018), to target specific translation
phenomena that require context. These novel test sets are larger-scale, and cover more trans-
lation phenomena (namely deixis, ellipsis, and lexical consistency) than that by Bawden et al.
(2018). We find that targeted test sets are very useful for development, allowing to measure
the impact of design decisions that may have little impact on generic metrics such as BLEU,
but affect how effectively the model learns to take context into account.

Our most recent work, Voita et al. (2019a), focuses on the challenging case where there is no
document-level parallel data, and all the available document-level data is monolingual. We show
that consistency in translation can be improved with a monolingual repair model, essentially
a model that performs automatic post-editing purely on the basis of the primary system’s
translation output. Such a setup is attractive because the monolingual repair system can be
trained without document-level parallel data, but it also has advantages from a deployment
perspective, since it allows for some independence between the development of the (sentence-
level) main translation system, which may be multilingual, and language-specific monolingual
repair modules to improve document-level consistency.

CUNI has experimented with improving document-level coherence by translating a windows
of subsequent techniques. The system was submitted to the WMT19 news translation task, see
Popel et al. (2019).2 Based on overall scores, no clear benefit of this style of training is apparent

2Note that this particular publication received support from other grants, not ELITR.
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but a more targeted evaluation is yet to be performed.

4 Task T4.3 Multi-Target MT (CUNI, UEDIN, KIT)
Task 4.3 was proposed to reduce primarily the computational costs of training MT models for
the highly multilingual setting needed to support EUROSAI Congress, translating from 7 source
languages up to 43 target languages.

With multi-lingual models, described in this section, we also benefit from the GPU paral-
lelism and translate the given input sentence to many targets at once, in one GPU batch. We
talk about “rainbow translation models” and adjust the integration pipeline to handle them
well. The details of this integration are not the focus of this deliverable and we thus omit them.

While Task T4.3 was originally planned only for year 1 of the project, the experiments, esp.
those described in Section 4.2 proved more time (and resource) consuming than expected. We
will thus continue the work on finding the best balance of languages in multi-target models also
during year 2.

4.1 Massively Multi-Lingual Model
UEDIN has trained baseline multi-target machine translation models to cover all EU and EU-
ROSAI translation directions (see T4.1). These massively multilingual baseline models exhibit
a quality drop in translation quality compared to dedicated bilingual machine translation mod-
els – on a selection of 4 language pairs (EN→{DE,ZH,BR,TE}), the average drop is 2.9 BLEU
(20.9→18.0). We have identified model capacity as a limiting factor in massively multilin-
gual models, and we have investigated methods to increase model capacity without incurring
too much cost in efficiency. Unfortunately, just increasing the number of layers in a typical
Transformer model leads to vanishing gradient and unstable training. Thus, we first devel-
oped methods to train deep and efficient models in a bilingual setting (Zhang and Sennrich,
2019; Zhang et al., 2019). Our contributions consist of a novel depth-scaled initialization for
Transformers that allows training of deep models (up to 30 encoder and decoder layers) with-
out gradient vanishing, a more efficient variant of layer normalization, and a merged attention
mechanism for the decoder that increases efficiency.

Specifically for multilingual models, we also investigate methods to keep some parameters in
the encoder specific to the target language. Specifically, we consider having language-aware bias
terms in the model’s layer normalization (LALN), and a language-aware linear transformation
on top of the encoder (LALT).

Results of UEDIN experiments in multi-target MT are shown in Table 3. We can see that
both the language-aware components and deep models benefit multi-target MT models. Com-
pared to our baseline, we see an average improvement of 3 BLEU for high-resource languages,
7.5 BLEU for medium-resource languages, and 9.6 BLEU for low-resource languages. On the
selected language pairs with bilingual results, we see an average improvement of 3.2 BLEU.
While we outperform the 6-layer bilingual baseline, performance is still below that of deeper
bilingual systems, but the gap has become smaller.

4.2 Exploring Mid-Sized Multi-Lingual Models
CUNI has performed language clustering experiments for multi-target MT, with the aim of
exploring the effects of language relatedness and determining the optimal number of target
languages in a single multi-lingual model. No modifications were applied to the Transformer
model in the experiments described below. The model size and other hyper-parameters are
constant for all setups inside a particular experiment.

In our first experiments, we used the ‘en-to-36’ dataset, which is the English-sourced half of
the dataset described in Section 2. With a relatively high number of languages in the dataset,
it is possible to train a sufficient number of models which include target languages related in
many different ways (e.g. related by script, by language group, or by some of WALS features;
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High Med Low Avg Avg (DE/ZH/BR/TE)
bilingual (6 layers) - - - - 20.9
bilingual (12 layers) - - - - 22.8
one-to-many (6 layers) 21.8 26.5 24.3 24.2 18.0
one-to-many (6 layers + LA*) 22.8 30.5 34.5 28.6 20.1
one-to-many (12 layers + LA*) 23.8 31.6 32.5 29.3 19.9
one-to-many (24 layers + LA*) 24.8 34.0 33.9 30.9 21.2

Table 3: One-to-many translation performance for deep models, and models with language-
aware components (LA*). Scores are grouped based on amount of training data into high-
resource (≥ 0.9M ; 45), low-resource (≤ 0.1M ; 18) and medium-resource (others; 31) languages.
Bilingual systems are trained and evaluated on typologically different languages DE, ZH, BR,
and TE.

Dryer and Haspelmath, 2013), as well as randomly selected languages for comparison. Here we
expect to see the effects of shared subword vocabularies, sentence structures, etc. The ‘en-to-36’
dataset has the benefit of language diversity but it suffers from the differences in the underlying
data sources: Aside from the subject of our study, the varying set of languages, the observed
differences in performance could be also attributed to the differences in the datasets the models
are being trained on.

Here and below ‘1-to-N model’ refers to a model that translates from English to N target
languages. For instance, ‘en→[de, nl]’ is a 1-to-2 model that translates from English to German
and Dutch. Its training data is the (shuffled) concatenation of ‘en→de’ and ‘en→nl’ training
sets. The target language tag is prepended to each source sentence as described in Section 2.

For the ‘en-to-36’ dataset, there are multiple setups being considered. First of all, in a
‘random’ setup the models are randomly grouped into sets by 9. For each set, a number of one-
to-many experiments are generated, so that every language from the set occurs in 1-to-2 up to
1-to-5 setting three or more times. As of now, only for one of 9 languages sets the models were
trained. This way, we expect to observe an average performance decreasing with the number of
target languages in the model. Also, we expect to observe a more pronounced decrease when
target languages with different scripts are mixed in a model.

Next, languages can be grouped by particular linguistic characteristics. So far, two sets
were considered: Slavic languages with Cyrillic script and Germanic languages. To this end, we
ran experiments from 1-to-2 to 1-to-5 for Germanic languages and to 1-to-4 for Cyrillic-written
languages, organizing the experiments in the same manner as for random sets.

Table 4 and Table 5 show results for some of target languages. In total, we trained 83 models
for these experiments. For presentation purposes, we focus on targetting Bulgarian (bg) and
Ukrainian (uk) in the Slavic experiment and Danish (da) and Swedish (sv) in the Germanic
experiment. In other words, one can see this as a study of how multi-target models cater for
Bulgarian, Ukrainian, Danish and Swedish.

In both tables, we vary the number of target languages in the model (see the column “#TG”)
and in the Slavic experiment, we consider two different test sets for Bulgarian. In all cases, we
report the average BLEU score when translating into the given language using a 1-to-#TG
model. The “surrounding” target languages in the model affect the performance, but there are
too many possible sets of these languages so we have to only sample from from. The column “#”
indicates how many different model trainings (with different target language sets) are included
in the average BLEU.

Comparing the average BLEU scores in the column “Random” with BLEU scores in the
column “Cyrillic” (or “Germanic”, resp.), we see a gain of 1.0 to 1.5 BLEU when model is
trained on closer languages, i.e. when the surrounding target languages are all from the Cyrillic
or Germanic group.

In both tables, we observe a clear decrease in BLEU when more target languages are included
in the model and the technique described in Section 4.1 should clearly be used in our future
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Target language Dataset version Biling. BLEU #TG random Cyrillic
BLEU # BLEU #

bg

Europarl v7 41.70

2 39.13 3 40.75 2
3 37.88 4 39.25 2
4 37.04 5 38.00 1
5 36.10 3 - -

OpenSubtitles v2018 22.80

2 21.17 3 23.20 2
3 20.43 4 22.20 2
4 19.70 5 21.30 1
5 19.87 3 - -

uk OpenSubtitles v2018 14.00

2 12.75 2 12.15 2
3 11.00 3 12.20 2
4 10.03 4 11.30 1
5 9.88 4 - -

Table 4: Sample Bleu scores for experiments with Slavic languages with Cyrillic script (ru, uk,
mk, bg) and with random set of target languages. “#TG” is the main parameter of interest,
the number of target languages per one model. The column “BLEU” is the average BLEU score
and the column “#” reports the number of models in this group across which the average is
reported. “Biling. BLEU” is the benchmark, BLEU of the simple pairwise model (i.e. #TG of
1).

Target language Dataset version Biling. BLEU #TG random Germanic
BLEU # BLEU #

da Europarl v7 33.70

2 32.70 1 33.05 2
3 31.57 3 32.50 2
4 31.00 3 31.95 4
5 30.28 6 31.77 3

sv Europarl v7 33.60

2 32.35 2 32.60 2
3 31.15 4 31.85 2
4 29.90 2 31.40 2
5 31.20 1 31.15 2

Table 5: Bleu scores for Germanic languages (da, de, nl, no, sv, is) and random set of target
languages. Columns as in Table 4. Underscored values indicate unreliable result: ‘en → [bg,
da, ka, sv, uk]’ training data contains ∼50% of sv test set from Europarl v7, while ‘en → sv’
training data contains only ∼3% of this test set.

experiments.
Unfortunately, there are also anomalous values observed, see the underlined BLEU scores

in Table 5. The reason for this may be in the sampling issue described in the following.
For our ‘1-to-36’ experiments, we relied on the datased prepared and described in Deliverable

1.1. The main focus when the dataset was prepared was the coverage of the target languages.
Because some of the languages were known to have very limited data sources, no strict filtering
was applied to the training vs. test sets. This is particularly problematic in our multi-target
experiments, because (source) sentences in the test set for one language can occur among the
(source) sentences in the training data for another target language. The full detail of these over-
laps is reported in Appendix A.3 Some of our experiments are affected too much by this overlap.
Tables 4 and 5 contain only the results where the overlap was not too big and the obtained
scores are generally trustworthy. In these tables, ‘Europarl v7’ and ‘OpenSubtitles v2018’ refer
to the parts of test set sampled from Europarl v7 (Tiedemann, 2012) and OpenSubtitles v2018

3 In Section 2, the problem of test set overlap was avoided by testing on News Commentary v14, a distinct
test set. However, this test set does not provide a sufficient number of different target languages, so we couldn’t
have used it here.
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(Lison and Tiedemann, 2016).
Since the desired target language in multi-lingual models is indicated only as one of the

input symbols, it is technically possible that the model starts producing a wrong language.
This behaviour is rather rare, but we still observed it in the ‘en → [ru, uk]’ setup. The Rus-
sian training data contains the data from common domains as well as news domain and the
political domain. The Ukrainian training data consists almost completely of common domain
sentences. When various sentences from newspapers were passed to the ‘en → [ru, uk]’ model
with the desired language tag <2uk> prepended (which means the requested target language is
Ukrainian), sometimes the translation was produced partially in Russian, partially in Ukrainian.
A possible reason for that may be that with lack of domain data in one language the model may
prefer switching into another language which has more training data in this domain instead of
attempting to translate into the requested target language. To check this observation, more
setups with target languages that have a big portion of the sub-word vocabulary shared among
them will be tested.

WALS features setup is currently a work in progress. In this setup, models will be grouped
with the nearest models in the selected WALS features embedding space. Selection of particular
features and suitable embedding type (PCA, UMAP or t-SNE) is to be decided.

Additionally, we are starting to experiment with the UN parallel corpus (Ziemski et al., 2016)
instead of the ‘1-to-36’ corpus. The full multi-parallelism in the UN corpus allows us to exclude
the effect of the text content and shared linguistic structures or features and to concentrate
solely on measuring the negative effect of adding one more target language to the model of
the same size. The downside is that the set of languages needed by ELITR, the EUROSAI
languages, is quite considerably different from UN languages.

5 Task T4.4 Multi-Source MT (CUNI, UEDIN, KIT)
This task is planned for year 2 and it can focus on translating in the written or spoken domain.

Since the spoken domain is generally harder to obtain, we already started gathering data
from the seminars and mock interpreted conferences of students of interpreting from Institute
of Translation Studies, Faculty of Arts, CUNI. We have recordings from three mock interpreted
conferences, around 213 minutes of speech in Czech, French, German, English and Spanish. The
Czech source is interpreted into all the mentioned languages. Non-Czech source is interpreted
into Czech and from Czech into other languages. Depending on the availability of the students
during the conference and their need for breaks, some directions are missing or are provided
multiple times in parallel. There are at most 8 parallel channels. Similarly, we have record-
ings from seminars of simultaneous interpreteting between Czech and German (69 minutes, 7
channels), Russian (32 minutes, 3 channels) and French (32 minutes, 7 channels). There is one
source interpreted into the other language in independent parallel channels.

The data from the Institute of Translation Studies are unique as a source of Czech interpret-
ing. There are some publicly available corpora of interpreted speech (e.g. Iranzo-Sánchez et al.,
Di Gangi et al., 2019), but none of them contains Czech. Although the data contain students’
interpreting, and therefore may contain imperfections in the interpretation, it is unique because
of the parallelism. It may be used for analysis of interpreting (together with other sources) or
for evaluation of multi-source MT.

6 Task T4.5 Flexible Multi-Lingual MT (CUNI, UEDIN, KIT)
This task is planned for year 3.
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A Test/Train Data Overlap
The following table reports the number of source (en) sentences in test sets (rows) that are also
present in training sets (columns):
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