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1 Executive Summary
This deliverable reports on the progress in the minuting activities related to WP5. In this work
package, we will design and implement a method for automatic summarization of speech tran-
script into the form of structured meeting minutes, populating a pre-defined structured agenda.
The process is conceived as a pipeline of subtasks which are Task 5.1: Meeting Segmentation
(automatic separation and clustering of various types of utterances, CUNI; months 1–12), Task
5.2: Segment-Level Summarization (summarizing sentences into bullet points, UEDIN, CUNI,
KIT; months 7–24), Task 5.3: Document-level Summarization (selecting segments to include in
the summary, CUNI; months 13–24), and Task 5.4: Sequence to Structure (matching the bullet
points with the meeting agenda topics, CUNI; months 19–36).

Each subtask will be evaluated intrinsically. The overall integration and testing will happen
in WP6. As shown in Table 1, Task 5.1 was concluded according the the plan and the other
tasks are on track.

Task Months Status
5.1: Meeting Segmentation 1–12 concluded as planned
5.2: Segment-Level Summarization 7–24 as planned
5.3: Document-level Summarization 13–24 as planned
5.4: Sequence to Structure 19–36 as planned

Table 1: Execution Timeline of the Minuting Tasks

The followind sections provide details on each of the tasks. Additionally, we report on the
progress of the construction of a corpus of meeting recordings in Section 3, despite it formally
belongs to WP1.
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2 The Minuting Pipeline
One of the research goals on ELITR is to come up with methods of “minuting”, i.e. automatic
summarization of meetings. This goal is a natural continuation of other tasks explored in
ELITR, e.g. support for multi-lingual discussion.

The minuting aims to automate the extraction of the important pieces of information (e.g.,
the decisions or conclusions) from the meeting transcript and structures them based on the
meeting agenda topics. The minuting module takes as input the meeting transcript and the
“Agenda” (a list of topics to be discussed) and it is expected to produce the minutes of the
meeting and the filled agenda (a topic match between some of the minutes and the agenda
points). It is conceived as a pipeline of four steps as depicted in Figure 1. Our code, data and
preliminary results are available in the online repository.1 The following subsections describe
each step in more details.

Figure 1: Schematic view of the minuting module.

2.1 Preliminary Research Activities
The main part of the minuting module is the topic aggregation of the transcript segments
and the topic matching with the agenda clauses. For this reason, we started the minuting
research activity trying to understand how are the topic aspects of a document reflected in its
main metadata like title, abstract and keywords. Çano and Bojar (2019a) brings a survey on
the keyword extraction and generation. This work is reproduced in Appendix A and presents
several insights about the recent techniques involved in the process, the most popular keyword
generation datasets, the strategies that are used for keyword quality evaluation, etc.

Another issue we wanted to explore was the relation between the summarization task and
the document keywords. We checked the quality of keywords produced by the abstractive
summarization of document titles and abstracts (Çano and Bojar, 2019c). The most important
take away message we got from this work (reproduced in Appendix B) is the fact that abstractive
summarization techniques do not properly preserve the topic aspects of their text imputs. For
this reason, we are inclined to use extractive techniques in the minuting process, despite trying
abstractive ones as well.

In a final empirical survey, we explored various text summarization techniques from the
data efficiency point of view (Çano and Bojar, 2019b) and came to realize that the Transformer
architecture (Vaswani et al., 2017) is the most data efficient from the ones we tried. Further-
more, this work (reproduced in Appendix C) brings various text summarization ROUGE scores

1https://github.com/ELITR/minuting-experimentation
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Figure 2: Attempt to shortcut the minuting process.

(Lin, 2004) that have served us as comparison baselines on our ongoing text summarization
experiments.

2.2 Data Inputs and Outputs
The inputs of the minuting module are the meeting transcript and the predefined agenda with its
topics which were planned to be discussed by the participants. The dialogues in the transcript
are probably messy since they come out of the Automatic Speech Recognition module. There
will likely be language disfluencies that are typical in spoken language.

The predefined agenda is just a list topics that are to be discussed in the transcript. It may
happen that certain topics of the agenda are not discussed at all. Other unpredicted topics (not
listed in the agenda) may also be discussed and be present in the transcript.

The best publicly available datasets of transcripts and minutes that we found are the AMI2

and ICSI3 corpora. AMI is a collection of 134 transcripts and 100 hours of audio recordings,
together with various valuable annotations. ICSI is smaller, containing 58 transcripts and
70 hours of recordings. They were both released in 2005 and have become very popular in
the minuting research literature. Additionally, we are building our own corpus of meetingss,
see Section 3. The problem with these datasets is their small size. Since we are trying big
models based on neural networks, we obviously needed larger text collections. To overcome
this limitation, we crawled several academic networks and created two corpora (OAGKX and
OAGSX) of publication metadata that are described by Çano and Bojar (2020), reproduced
in Appendix D. We also adopted the CNN/DailyMail dataset of Nallapati et al. (2016) that is
very popular in the literature.

Another preliminaty data-related activity we performed was the transformation of AMI and
ICSI corpora from their XML format to a plaintext format that is much easier to work with.
This process also removed many of their details such as emotional or body language annotations
that are not used in the minuting process.

Finally, before running any experiment, we performed a few more text cleaning steps. We
lowercased everything to reduce the reduce the vocabulary size and used Standord CoreNLP
(Manning et al., 2014) to tokenize the dialogues in words.

2.3 T5.1: Transcript Segmentation (months 1–12)
Before organizing the minuting task in subtasks, one thing we wanted to try was to make sure
that it was really necessary. In other words, we wanted to be sure that trying to obtain the

2http://groups.inf.ed.ac.uk/ami/download/
3http://groups.inf.ed.ac.uk/ami/icsi/download/
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transcript minutes directly from the transcript (as it is shown in Figure 2) with existing text
summarization models would not produce acceptable results. We applied a transfer learning ap-
proach the the Transformer of Vaswani et al. (2017) as the text summarizer, the CNN/Dailymail
news stories as train samples and the AMI data as test samples. As we expected, the results
were very poor both quantitatively (very low ROUGE scores) and qualitatively (messy and
incorrect minutes).

To improve the quality of the transcript minutes, we conceived the minuting process as the
pipeline illustrated in Figure 1. The next step after the data preprocessing is the segmentation
of the whole meeting transcript. The goal of this step is to break the spoken language texts
into segments which are a couple of consecutive sentences normally related to the same topic.
This step is delicate since we have to take care of the logical and grammatical correctness of
the produced segments (e.g., correctly identifying sentence boundaries).

First, we tried a supervised approach of Koshorek et al. (2018). The task is formulated as
binary classification of sentences; namely, each sentence is assigned a probability that it is the
last one in the current segment. The dataset consists of about 700k Wikipedia articles, where
the segments are given by the top-level hierarchy of each document. A single data example is
a document represented as a list of sentences. The model consists of two levels of LSTM cells.
The first level operates independently on each sentence in the document to create a sentence
representation. The second level then operates on these sentence representations and equips
them with some contextual information. We replicated the results (Koshorek et al., 2018) and
marginally improved them by modifying the training objective to reflect the Pk metric that
is used to evaluate performance of segmentation models. However, the main disadvantage of
this approach is the assumption of a large in-domain dataset, which is, in our circumstances,
problematic. Therefore, we also investigated other methods.

Since there is no limitation in the number of the segments that are created, we use the intra-
segment semantic similarity to optimize that number. The transcript is first split in separate
sentences. Then we group them in various clusters and check the average intra-cluster cosine
similarity value. The final segment configuration (the number of segments and the phrases
in each of them) is the one that maximizes this value. Until now we have explored several
unsupervised learning algorithms. According to our results, agglomerative clustering works
best, at least for the data we are working with.

Another possible subtask is the diarization which identifies the speaker’s name in the text.
We can have this name as a label in front of each text segment. For the moment, we haven’t
conducted any diarization experiments. Meanwhile, the AMI and ICSI corpora are already
diarized with dummy names such as letters like A, B, C, D. So one possibility is that we
perform a dummy diarization just to maintain compatibility with AMI and ICSI data. In the
long term, we plan to apply a real diarization.

2.4 T5.2: Segment Compression (months 7–24)
The next step is segment summarization, or summarization applied in each of the discourse
segments. This is technically very similar to sentence compression, even though we have several
sentences in each cluster. Our goal here is to further improve the text quality by removing the
disfluencies and redundancies of the spontaneous speech. We also want to preserve the original
information and to ensure the grammatical correctness of the test segments. This is achieved by
applying extractive (to preserve original phrasing) models based on LSTM neural networks that
delete redundant words by pruning the syntactic tree of the entire sentence. These supervised
learning approaches such as Filippova et al. (2015) or Lai et al. (2018) are very popular in
the literature. There are still several recent attempts with unsupervised methods that rely
on contextual word embeddings such as those of pretrained language models (Zhou and Rush,
2019). They achieve compelling results without the need for any paird data samples. As for
the datasets, most of the studies use big corpora like the one of Filippova and Altun (2013) or
the annotated English Gigaword of Napoles et al. (2012).
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2.5 T5.3: Transcript Summarization (months 13–24)
The next step is the transcript summarization subtask which produces one of the desired out-
puts, the meeting minutes. The goal in this phase is to correctly identify the most important
phrases from the segments. They can be sentences that express meeting decisions or take-away
messages. Once again, grammatical correctness and logical order of the phrases in the minute is
mandatory. We are exploring both extractive and abstractive approaches for this task. Since we
need to archive the meeting decisions, the extractive way seems more convenient. The biggest
difficulty we are facing is the lack of domain data. AMI and ICSI are very small to train big
models such as the Transformer. We are actually using them as test sets only. For the training
we are using the news texts of the CNN/Dailymail collection.

The recent solutions for this task are based on pretrained models such as BERT and offer the
possibility to create both extractive and abstractive models (Liu and Lapata, 2019). We used
the extractive model trained on CNN/Dailymail data reached the authors’ scores4 (ROUGE-1:
42.33, ROUGE-2: 19.54, and ROUGE-L: 38.78 F1 scores) when testing on the test split of the
same dataset. However, that was not the case when testing on the minuting samples of AMI
and ISCI corpora. We reached ROUGE-1: 16.24, ROUGE-2: 4.33, and ROUGE-L: 14.07 F1
scores which are considerably lower. From the qualitative point of view, we observed that the
summaries contain a few word repetitions and many grammatical errors. The most probable
explanation for these poor results is the domain difference between the news of CNN/Dailymail
and the meeting transcripts of AMI and ICSI. Overcoming this handicap is our biggest challenge
for the moment.

2.6 T5.4: Agenda Completion (months 19–36)
The last step of the pipeline is the completion of the predefined agenda. It will produce the
second output that is the agenda with clauses from the minutes matched to its topics. The
matching of the minute phrases and the agenda topics will be achieved by applying topic mod-
eling methods and maximizing their respective semantic similarities. The progress on this
pipeline phase depends on the quality of the discourse summaries we obtain from the previous
phases and the accuracy of the topic modeling solutions.

We are also working on the minuting demonstrator and its design. This is a tool conceived
as an autonomous script that reads the growing transcript and uses the minuting module to
populate the agenda with the minutes. Every time that the transcript grows with a certain
amount of words (e.g., the script could be activated for every 400 words added to the transcript),
it summarizes those words and populates the agenda. Then it waits for the next sequence of
words. Ideally, the demonstrator and its interface would work live during the meetings.

4https://github.com/nlpyang/PreSumm
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3 Corpus of Minuting, Work in Progress
The data creation is primarily the part of the WP1 Data but because there is no delierable from
WP1, we are reporting on the progress of the Minuting corpus creation here in D5.1.

Within the ELITR project, we create the corpus of minuting. The corpus consists of meetings
in English and Czech and the minutes to these meetings. For the meetings, we have their audio
or video recordings, automatic ASR transcripts and manually corrected transcripts. Some
meetings are equipped with double-checked manual transcripts. As for the minutes, we have
original minutes, completed by the meeting organizer or a secretary, and then we provide the
additionally created minutes by our annotators. For some meetings, we create multiple minutes,
to study the mechanism of important information extraction and summarization.

The annotation of the minuting corpus is going on. For the time being, we have the numbers
which are presented in Table 2. The numbers in the table are not cumulative, i.e., for example,
for English meetings, we have the general collection consisting of 87 hours of the recordings,
out of which 40 hours have been provided with manual transcripts and 37 hours contain also
the specially generated minuted.

Meetings English Czech
meetings with original minutes 87h. (70 meetings) 46h. (42 meetings)
meetings with manual transcripts 40h. (42 meetings) 41h. (37 meetings)
meetings with additional annotation of minutes 37h. (39 meetings) 41h. (37 meetings)

Table 2: Corpus of Minuting

At the moment, we don’t have the deidentification of the meetings yet, so the texts may
contain some personal information.

The meetings are also different as concerns the consents of the participants with their use
in the future. Most of the meetings will be open, but some will be used only internally.

4 Conclusion
This deliverable described the progress in WP5 Minuting and also the related data acquisition
(WP1) for meeting summarization.

Overall, WP5 proceeds according to the plans but given the complexity of the meeting
summarization task and the insatisfactory results of the baselines examined so far, we do not
expect that we can arrive at a fully working solution by the end of the project. Instead,
anticipate WP5 to conclude with precisely defining the task and providing a solid dataset for
testing and limited training. We plan to organize a shared task to allow also external teams to
contribute to the development of meeting summarization methods.
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Abstract—Extractive keyphrase generation research has been
around since the nineties, but the more advanced abstractive
approach based on the encoder-decoder framework and sequence-
to-sequence learning has been explored only recently. In fact,
more than a dozen of abstractive methods have been proposed in
the last three years, producing meaningful keyphrases and achiev-
ing state-of-the-art scores. In this survey, we examine various
aspects of the extractive keyphrase generation methods and focus
mostly on the more recent abstractive methods that are based on
neural networks. We pay particular attention to the mechanisms
that have driven the perfection of the later. A huge collection of
scientific article metadata and the corresponding keyphrases is
created and released for the research community. We also present
various keyphrase generation and text summarization research
patterns and trends of the last two decades.

I. INTRODUCTION

A keyphrase or a keyword (here we use them interchange-
ably) is a short set of one or a few words that represent a
concept or a topic covered in a document. They are commonly
used to annotate articles or other documents and are essential
for the categorization and fast retrieval of such items in digital
libraries. A keyphrase string, on the other hand, is a set
of comma-separated (other separators may be used as well)
keyphrases associated with an article or a different type of
object, describing the content and topical aspects of it.

Because of their high importance and the need to process
huge amounts of documents with missing keyphrases, KG
(Keyphrase Generation) attracted high academic interest since
the 90s. Some basic works of that time such as [1], [2], and [3]
used text features and supervised learning algorithms (popular
at that time) to extract keywords from documents. Improved
supervised methods like [4], [5], and [6], graph-based methods
like [7], [8], and [9], or other unsupervised KG methods such
as [10] and [11] were proposed in the 2000s.

Extractive KG became so popular in the 2000s and early
2010s, that the entire research field was commonly called
KE (Keyphrase Extraction). This success was mainly due to
the simplicity and speed of the proposed solutions. There is
still a serious flaw in extractive KG: the inability to produce
absent keyphrases (predicted keyphrases that do not appear in
the source text). Analyzing the most popular datasets, [12]
showed that present (predicted keyphrases that also appear
in the source text) and absent keyphrases assigned by paper
authors are almost equally frequent. Ignoring the later is thus
a serious handicap.

Motivated by the advances in sequence-to-sequence ap-
plications of neural networks, several studies like [12] or
[13] started to explore AKG (Abstractive Keyphrase Genera-
tion). The encoder-decoder (or sequence-to-sequence learning)

paradigm that was first utilized in the context of machine
translation (e.g., in [14], [15] or [16]) got quick adaption in
related tasks such as text summarization (like in [17] and [18])
or AKG. Since that time, AKG research took over and is today
a vibrant field of study.

In this survey, we start by reviewing the most popular KE
methods, specifically the supervised, the graph-based and the
other unsupervised ones. We go on describing the popular
existing keyphrase datasets and present OAGKX, a novel and
huge collection of about 23 million metadata samples (titles,
abstracts, and keyphrase strings) from scientific articles that is
released online (http://hdl.handle.net/11234/1-3062). It can be
used as a data source to train deep supervised KG methods
or to create byproducts (other keyphrase datasets) from more
specific scientific disciplines.

Unlike similar recent reviews such as [19], [20], or [21]
that focus entirely on extractive KG (or KE), the main interest
of this work in the more recent and technically advanced AKG
studies which are examined in details. Particular attention is
paid to the network structures and the enhancement mecha-
nisms, as well as to the evaluation process the authors follow.
We also describe certain research patterns that we observed
such as the interesting analogy with similar developments in
text summarization research.

II. EXTRACTIVE KEYPHRASE GENERATION

Extractive keyphrase generation methods are simpler and
appeared in the literature in the late 90s. They usually follow
two steps. First, candidate phrases are selected from the
document. Different strategies are latter applied to decide if
each candidate is a keyphrase or not. The following subsections
briefly describe the most popular extractive methods. More
comprehensive and detailed reviews entirely focused on KE
can be found in other surveys such as [19].

A. Supervised Methods

One of the first studies that considered KG as a super-
vised learning problem was [3]. In that study, the author
experimented with texts from journal articles, email messages,
and Web pages. Some of the used features were word fre-
quency, phrase length, number of words in phrase, etc. C4.5
decision tree algorithm of [22] was utilized as a classifier,
in combination with a bagging procedure based on random
sampling with replacement presented at [23]. The author also
experimented with GenEx, an algorithm described in [2] that
was specifically designed to extract document keyphrases. He
concluded that domain knowledge is highly valuable in the
keyphrase extraction process and GenEx (using that knowl-
edge) performs significantly better than C4.5 (not using it).
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This work encouraged other researchers to develop supervised
learning methods for solving KE problems.

Almost at the same time, KEA (Keyphrase Extraction
Algorithm), a language-independent supervised KG algorithm
was developed and presented in [1]. It uses features like
TF-IDF and first occurrence and then applies Naïve Bayes
classifier to determine if candidate phrases are keyphrases or
not. Authors evaluate KEA using NZDL dataset (see Table I)
and report that it is able to correctly identify one or two of the
first five author keyphrases.

The development of Maui, a similar algorithm presented in
[5] was a further step forward. Maui extends KEA in several
ways. It combines more feature types and exploits Wikipedia
articles as a source of linguistic knowledge. Furthermore, Maui
can work well with both Naïve Bayes and bagged decision tree
classifiers.

Some attempts explore various feature setups for improving
the existing methods. The author in [24] investigates the role of
additional features like n-grams, noun phrases, POS tags, etc.
She concludes that using words or n-grams that match POS
tag patterns increases the recall compared to the usage of n-
grams only. Furthermore, according to her results, the syntactic
information of the POS tags is also important for optimizing
the number of keyphrases assigned to each document. The
author also creates and uses Inspec, a dataset of scientific
paper metadata. Other studies like [25] or [26] that followed
also experimented with scientific paper texts, a practice that is
common even today.

The logical structure of a scientific article is defined in
[27] as the hierarchy of its logical components like title,
list of authors, abstract and sections. Authors of [6] use that
logical structure to build WINGNUS by limiting the number
of identified candidate phrases. They further use different
features like length of phrases, typeface and position (in title,
introduction, etc.) for training the Weka implementation of
Naïve Bayes (presented in [28]) to select the best candidates.
Authors conclude that using the logical structure of the scien-
tific articles yields superior performance over methods that do
not consider that information.

In [29] they experimented by adding syntactic relations
extracted with the dependency parser of [30]. They also tried
different classifiers like Support Vector Machines of [31] and
Random Forests of [32]. According to their results, the NLP-
based features improve F1 scores of all the tested methods.
They also concluded that Random Forest is a good trade-off
between keyphrase quality and generation speed.

There were also a few studies that applied neural network
structures to perform extractive KG. In [4], for example, they
used a feed-forward neural network as a classifier and paid
particular attention to title headings (also subheadings) and
phrase repetitions. Authors of [33], on the other hand, utilized
a more complex neural network structure based on LSTMs
(Long Short-Term Memory) to build an end-to-end keyphrase
extraction system that eliminates the need for manual engi-
neering of statistical features.

B. Graph-Based Methods

From the unsupervised extractive KG methods, those based
on graph computations are the most numerous. In [34] they
introduced TextRank, a graph-based ranking method inspired
by the PageRank algorithm of [35]. They implement the idea
of “voting”: a vertex that represents a word or phrase (lexical
unit) links to another one, casting a vote in the later. A higher
number of votes to certain words or phrases suggests that they
are more important. All lexical units of the source text are
ranked this way. The returned keyphrases are constructed from
the top N words.

Authors of [7] use the concept of the neighborhood of
a given document: a set of similar documents that expands
that document. They later employ PageRank on the local
graph (of a single document) or the expanded graph (of the
neighborhood) to rank the words and phrases. SingleRank and
ExpandRank are the names of the corresponding methods they
derive. The authors report that ExpandRank is significantly
better than SingleRank for any size of the neighborhood.

In [36] they follow a similar approach to formulate Cite-
TextRank. Authors use the documents citing the given doc-
ument (citation network) to expand it and then they apply
PageRank. TopicRank defined in [9] is another improvement
over TextRank. It first clusters lexical units of the document
according to their topic. Afterwards, it uses a graph-based
ranking model to assign scores to the topic clusters. Finally,
keyphrases are generated by picking one of them from each
ranked cluster.

One of the fastest available KE methods is RAKE proposed
in [8]. Authors first remove punctuation and stop words and
then create a graph of word co-occurrences. Candidate words
are scored based on the degree and frequency of each word
vertice in the graph. The top-scoring ones are returned as
keyphrases. Authors report that RAKE achieves higher preci-
sion and similar recall when compared with other graph-based
methods like TextRank.

PositionRank is yet another graph-based KE approach
recently proposed by [37]. They construct a word-level graph
where they incorporate information from positions of all word
occurrences. PageRank is later used to score the words and
phrases. Authors show that using positions of all word oc-
currences works better than using the first occurrence of each
word only.

C. Other Methods

Besides the two categories above, there are also other unsu-
pervised methods that are not graph-based. They mostly utilize
clustering and various similarity measures to find the best
keyphrases. A very simple scheme uses TF-IDF to compute
scores and rank text phrases of the entire document. This raw
approach is one of the most frequent baselines in other studies
that propose KG methods.

Authors of [38] proposes another basic approach based on
term frequencies and stopword filtering. In [10] they argue that
KG systems should be unsupervised and domain-independent.
They build a KG system based on loosely structured ontolo-
gies. Authors of [39] rely on Deep Belief Networks described
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in [40] to capture the intrinsic representations of documents
and using them to extract keyphrases.

Another peculiar approach is the one by [41] who consider
keyphrasing as a form of translation from the language of the
document to the language of keyphrases. They use word align-
ment from statistical machine translation to learn matching
probabilities between document words and keyphrase words.

Statistical language models are also used by [42] who
utilize Kullback-Leibler divergence described in [43] to create
a single score (including phraseness and informativeness) for
ranking extracted phrases. YAKE! presented in [11] is another
example of an unsupervised and feature-based extractive KG
solution. They utilize features like casing, word position, word
frequency, and more, combined in a complex scoring function
that is used to yield the ranked keyphrases.

There is also a recent attempt in [44] to use the concept
of word embeddings in the context of the unsupervised KE.
Authors propose Key2Vec, a method for training phrase (multi-
word) embeddings which are used to represent the candidate
keyphrases and build the thematic representation of the docu-
ment. The candidate keyphrases are later ranked based on their
thematic relation with the document using the theme-weighted
PageRank algorithm of [45].

The many extractive (supervised, graph-based or other)
KG methods described in this section are complementary
and may be used in different scenarios and for different
purposes. To ease their implementation and benchmarking, the
author of [46] created PKE, a Python toolkit available online
(https://github.com/boudinfl/pke). It implements many of the
above methods, offers pretrained and ready to use KE models
and can also be easily extended to implement or benchmark
new methods.

III. KEYPHRASE DATASETS

A. Popular Corpora

The recent open data initiatives and data science compe-
titions have encouraged the creation and sharing of more and
more datasets. There are papers like [47] that release data
about movies, [48] about music, [49] about books and [50] that
describes data of other object categories. The computational
linguistics or natural language processing datasets consist of
various text collections that are used to solve particular tasks.
In the realm of KG, the most popular in the literature are the
collections of scientific articles shown in Table I.

Inspec is one of the earliest datasets, released in [24] where
the role of various linguistic features in KE is explored. It
consists of 2000 paper titles (1500 for training and 500 for
testing), abstracts and keywords from journals of Information
Technology, published from 1998 to 2002.

One of the smallest is NUS of [51], consisting of 211
conference papers. Each paper has two sets of keyphrases: one
set by the authors and a second that was created by volunteer
students. Another small dataset is SemEval (or SemEval-
2010) described in [52]. It is composed of 244 papers, 144
for training and 100 for testing. They were collected from
ACM Digital Library and belong to conference and workshop
proceedings.

TABLE I. PUBLIC KEYPHRASE DATASETS

Reference Name Content # Docs
[24] Hulth Inspec Papers 2000
[51] Nguyen NUS Papers 211
[52] Kim SemEval Papers 244
[7] Wan DUC News 308

[29] Krapivin Krapivin Papers 2304
[53] Zhang Twitter Tweets 147K
[12] Meng KP20k Papers 567K
[1] Witten NZDL Reports 1800

Krapivin, the dataset released in [29] has the advantage
of providing full paper texts together with the corresponding
metadata. There is a total of 2304 Computer Science articles
published by ACM from 2003 to 2005. The parts of each text
such as title, abstract and sections are separated and marked
to ease the extraction of various keyphrases.

The most popular KG dataset of the recent years is prob-
ably KP20k released in [12]. It consists of 567830 Computer
Science articles, 527830 for training, 20K for validation and
20K for testing. KP20k has been used for training and evaluat-
ing various recent abstractive methods. The biggest keyphrase
dataset is probably OAGK recently released in [59]. It contains
2.2M titles, abstracts and keyphrase strings of scientific papers
from different disciplines.

The above scientific paper datasets are summarized in
Table I. There are also a few more datasets of other document
types, but they are less popular in the literature. One of them
is NZDL, a collection of 1800 Computer Science technical
reports, 1300 for training and 500 for testing. It is described in
[1]. Authors use it to benchmark KEA, their extractive method
which was one of the first.

From the news domain, the DUC (or DUC-2001) dataset
of [7] is somehow popular. It consists of 308 news articles and
2048 keyphrase labels and has been used in a few extractive
and abstractive KG methods. In [53] they create a dataset of
about 147K tweets and their corresponding tags. Authors use
it to evaluate their model for hashtag prediction. Authors of
[54] use a dataset of 815 Web pages and the corresponding
extracted keywords for addressing advertisements.

The two most recent datasets are probably StackExchange
(post topics) and TextWorld (game observations and com-
mands) created and used by [55]. Similar datasets can be found
in other works like [56], [57] or [58].

B. A Novel and Huge Data Collection

Experimenting with keyphrases of scientific papers seems
an ongoing trend that is greatly motivated by the availability
of data in online academic repositories. Following the exam-
ples of [59] and [60], we took the initiative to produce an
even larger collection of scientific paper keywords, titles and
abstracts. Exploiting the whole data of Open Academic Graph
(described in [61] and [62]), we retrieved keywords, title and
abstract data wherever they were available. A language filter
was applied to remove every text record not in English. We also
lowercased and utilized Stanford CoreNLP of [63] to tokenize
the title and abstract texts.
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TABLE II. TOKEN STATISTICS OF OAGKX

Attribute Title Abstract Keywords
Total 290 M 4 B 270 M
Min / Max 3 / 25 50 / 400 2 / 60
Mean 12.8 (4.9) 175.1 (86.5) 11.9 (7.5)
Overlaps 78 % (17 %) 68 % (25 %)

Since there were several articles with very short or very
long text fields (outliers), we removed any record with a title
not within 3-25 tokens, abstract not within 50-400 tokens or
keyphrase strings not within 2-60 tokens. We also removed
records with a number of keyphrases now within 2-12. The
obtained dataset is OAGKX, a collection of about 23 million
article metadata records.

Some basic statistics regarding the distribution of tokens
in title, Abstract and Keywords fields of the articles can be
found in Table II. As we can see, the average lengths are about
13 tokens for the titles, 175 tokens for the abstracts, and 12
tokens for the keyphrase strings (standard deviation is given
in parenthesis). We also computed the token overlaps between
abstracts and titles, and between abstracts and keyphrase

strings. The overlap o(s, t) = |{s}∩{t}|
|{t}| between two token

vectors s (source) and t (target) is the fraction of unique tokens
in t that overlap with a source token in s. As we can see, there
is high repetition of abstract words, both in titles (78 %) and
in keyphrases (68 %).

We further observed the distribution of keyphrases. The
corresponding statistics are shown in Table III. There is a total
of about 133 million keyphrases with an average of about 6
in each article. The minimal and maximal of keyphrases in
each record is 2 and 12 respectively. In KG experiments, it is
also important to check the frequencies of the keyphrases that
are present and absent in the source texts. The present fraction

p(s, k) = |k ∩ s|
|k| is the fraction of the keyphrases k that do

appear in the source text s. The absent fraction a(s, k) =
|k|−|k ∩ s|

|k| is the its complement, or in other words the fraction

of the keyphrases k that do not appear in the source text s. As
we can see, OAGKX present and absent keyphrases are almost
equally frequent (52.7 % vs. 47.3 %). This is in line with the
observation of [12].

Using three extractive methods described in Section II,
We performed some preliminary experiments with OAGKX
data. We picked YAKE!, RAKE and TopicRank which are
simple and used them with their default parameters in each
implementation. Given that they are unsupervised and require
test data only, we picked a big test cut of 100K samples from
the entire OAGKX. In addition to the preprocessing steps
described above which were performed on entire OAGKX
collection, we also replaced digit symbols with # and joined
each title and abstract in common source string. The length of
this source string was limited to 260 tokens (a paper abstract
and the title should not be longer).

For the evaluation, we used F1 score of full matches
between predicted keyphrases from each method and those
available in the data record (author keyphrases). We computed
F1 scores on top 5, top 7 and top 10 returned keywords.
Before comparing, both sets of terms were stemmed with
Porter Stemmer and duplicates were removed. The obtained

TABLE III. KEYWORD STATISTICS OF OAGKX

Attribute Value
Total 133 295 056
Min / Max 2 / 12
Mean 5.9 (3.1)
Present 52.7 % (28.3 %)
Absent 47.3 % (28.3 %)

results are presented in Table IV. As we can see, the best of
the three methods is YAKE, with top F1@10 score of 21.86 %.
We also observed that RAKE was considerably faster than the
two other methods.

To have an idea about the topic distribution of OAGKX
articles, we inspected a few randomly picked data records.
We noticed that they belong to various scientific disciplines,
with medicine (and its research directions) being dominant.
There are also many papers about economics, social sciences
or different technical disciplines. To our best knowledge, this
is the biggest available collection of scientific paper data and
the corresponding keyphrases. The value of OAGKX is thus
twofold: (i) It can supplement the existing datasets if more
training data are required. (ii) It can serve as a data source
for creating scientific article subsets of more specific scientific
disciplines or domains.

IV. ABSTRACTIVE KEYPHRASE GENERATION

In this section, the recent AKG methods based on the
encoder-decoder framework are examined in detail. Table V
summarizes some of their neural network properties, together
with the evaluation data and metrics used by the authors.

A. Basic Neural Network Models

The authors of [53] were among the first to try RNNs (Re-
current Network Networks) for generating keyphrases (actually
hashtags) of tweets. They adopt a joint-layer RNN with two
hidden layers and two output ones. The latter are combined to
form the objective layer (keyword or not). Authors build and
refine a big dataset of tweets and the corresponding hashtags
(keywords in this context) for evaluating their method. The
basic LSTM of [64] and AKET, a tool for keyword extraction
on tweets described in [65] are used as comparison baselines.
Superior scores of 80.74 %, 81.19 % and 80.97 % are reported
in terms of P (Precision), R (Recall) and F1 respectively.

Another important work is [12], the first to adapt the
encoder-decoder framework for AKG. Their CopyRNN model
has an encoder that creates a hidden representation of the
source text and a decoder that generates the keyphrases based
on that representation. They employ a bidirectional GRU of
[14] as the encoder and a forward GRU as the decoder.
Keyphrase generation involves a beam search described in [66]
with max depth 6 and beam size 200. The attention mechanism
of [66] and copying mechanism of [67] are implemented
to improve performance and alleviate the out-of-vocabulary
words problem.

Authors evaluate CopyRNN on Inspec, Krapivin, NUS and
SemEval and KP20k (IKNSK for short) datasets. Comparing
with previous extractive approaches, they report state-of-the-
art results in terms of F1@5 (0.328 on KP20k) and F1@10
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TABLE IV. KE SCORES ON OAGKX (100K)

Method F1@5 F1@7 F1@10
YAKE! 19.27 21.49 21.86
RAKE 14.39 17.51 18.22
TopicRank 16.68 20.12 20.14

(0.255 on KP20k) scores for present keyphrases. They also
report top scores on R@10 and R@50 for absent keyphrases.
Their work created a roadmap of using the encoder-decoder
framework for AKG that has been followed by many other
researchers in these last three years.

In [68] they tried to optimize the speed of CopyRNN
building CopyCNN made up of CNNs (Convolutional Neural
Networks) which work in parallel. CNN layers are stacked
on top of each other to process variable-length input text
representations and gated linear units are used as the non-
linearity function, same as in [69]. They also use position
embeddings combined with input word embeddings to pre-
serve the sequence order. Authors test their method using
IKNSK and compare against several extractive methods and
CopyRNN. They report slightly higher performance scores (in
F1@5, F1@10, R@10, and R@50) compared to CopyRNN of
[12]. Their model is also considerably faster, with generation
times at least 6.2x lower.

Furthermore, authors in [13] tried to improve another
aspect of CopyRNN, handling of keyword repetitions during
generation. They build their model (CovRNN) utilizing a bidi-
rectional GRU for encoding and a forward GRU for decoding.
To consider the correlation of the generated target keyphrases
with each other (avoiding repetitions), they implement the
coverage mechanism of [70]. Same data (training on KP20k
and evaluation on IKNSK) setups are used. The authors com-
pare against extractive methods and CopyRNN. They report
slightly better results compared to CopyRNN on both present
(using F1@4 and F1@8) and absent (using R@10 and R@50)
keyphrases.

B. Enhanced and Hybrid Solutions

Many works followed, improving different aspects of AKG.
Authors of [71] propose a solution for handling repetition
and increasing keyphrase diversity. Besides using coverage,
they also implement a review mechanism that considers the
source context as well as a target context (collection of hidden
states) before predicting (decoding) the next keyphrase. Same
as above, they implement their model (CorrRNN) with bidi-
rectional GRU, forward GRU and beam search. They utilize
the training part of KP20k and evaluate on NUS, SemEval
and Krapivin datasets, comparing against several extractive
methods and CopyRNN. Given that keyphrase diversity is
important, besides the typical F1 and R metrics, they also
utilize α-NDCG of [72]. The authors report improvements on
all reported metrics. Peak scores of 0.318 in F1@5 and 0.278
in F1@10 are reached on Krapivin dataset. They also assess the
generalization ability of their model by training it with articles
and testing it on news using DUC dataset.

All the above methods are supervised and depend on
labeled training data which are not available for certain do-
mains. In [73] they try to overcome this limitation using two
approaches. In the first one, they tag unlabeled documents with

synthetic keyphrases obtained from unsupervised methods and
use them for model pretraining. The pretrained model is later
tuned on the labeled data. In the second one, they use multitask
learning by combining the task of AKG based on labeled data
with the task of title generation (a form of text summarization)
on unlabeled data.

Both tasks are implemented with a bilinear LSTM as the
encoder and a plain LSTM as the decoder. In the multitask
learning case, the encoder is shared by the two tasks wheres
the decoders are different. Authors use KP20k as a source of
labeled and unlabeled data and evaluate on IKNSK. A cross-
domain test with news data (DUC dataset) is also performed.
Their models outrun CopyRNN on all reported metrics (F1@5,
F1@10 and R@10) reaching a peak score of 0.308 in F1@5
on KP20k test set.

Authors of [74] try to inject the power of extraction
and retrieval into the encoder-decoder framework. A neural
sequence learning model is used to compute the probability of
being a keyword for each word in the source text. Those values
are later used to modify the copying probability distribution
of the decoder, helping the later to detect the most important
words. They also use a retriever to find documents annotated
similarly which provide external knowledge for the decoder
and guide the generation of the keyphrases for the given
document. Finally, a merging module puts together the ex-
tracted, retrieved, and generated candidates, producing the final
predictions. The authors use the same data and evaluation setup
as above. They report superior scores of 0.317 in F1@5 and
0.282 in F1@10 for present keyphrases as well as significant
improvements in R@10 scores for absent keyphrases.

Furthermore, in [75], they emphasize the important role
of article title which indeed can be considered as a high-
level summary of the text. Their solution (TG-Net) uses
a complex encoder made up of three main parts. First, a
bidirectional GRU is used to separately encode the source text
(abstract + title) and the title in their corresponding contextual
representations. Second, a matching layer catches the relevant
title information for each context word using their semantic
relation. Finally, another bidirectional GRU merges the original
context and the gathered title information into a final title-
guided representation. The decoder is similar to the ones
described above, equipped with attention and copying. The
authors train with KP20k and test on IKNSK. They report
important gains over CopyRNN and CopyCNN on present
keyphrases, with top scores 0.372 in F1@5 and 0.315 in F1@10
on KP20k test set. They also report significant improvements
in absent keyphrases (higher R@10 and R@50 scores).

An attempt to improve KG diversity is found in [76] where
their method produces keyphrases one at a time, considering
the formerly generated keyphrases. This is achieved by using
multiple decoders (each of them generates only one keyphrase)
that focus on different words of the source text by subtracting
the attention value derived from the previous decoder. As a
result, beam searches of beam size 1 are used to get the top
keyphrase from each decoder and coverage is used to have
diverse words in each keyphrase. The authors train their model
with KP20k (the train split) and test on Inspec, Krapivin,
and KP20k (the test split). They report improvements on
keyphrase diversity measured using distinct-1 and distinct-2
metrics described in [77].

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 89 ----------------------------------------------------------------------------

Authorized licensed use limited to: Charles University. Downloaded on June 05,2020 at 10:43:16 UTC from IEEE Xplore.  Restrictions apply. 

Page 15 of 47



European Live Translator
D5.1: Initial Report on Summarization

TABLE V. SUMMARY OF AKG MODEL PROPERTIES. IKNSK = {INSPEC, KRAPIVIN, NUS, SEMEVAL-2010, KP20K}, NSK = {NUS, SEMEVAL-2010,
KRAPIVIN}, IKK = {INSPEC, KRAPIVIN, KP20K}, GT = GENERATION TIME.

Method Evaluation
Reference Network Att Copy Cov Data Metrics

[53] Zhang2016 joint-layer, RNN - - - Tweets Precision, Recall, F1

[12] Meng2017 Enc-Dec, GRU � � - IKNSK F1@5, F1@10, R@10, R@50
[68] Zhang2017 Enc-Dec, CNN � � - IKNSK F1@5, F1@10, R@10, R@50, GT
[13] Zhang2018 Enc-Dec, GRU � � � IKNSK F1@4, F1@8, R@10, R@50
[71] Chen2018a Enc-Dec, GRU � � � NSK F1@5, F1@10, R@10, N@5, N@10
[73] Ye2018 Semisup, LSTM � � - IKNSK F1@5, F1@10, R@10
[75] Chen2018b Enc-Dec, GRU � � - IKNSK F1@5, F1@10, R@10, R@50
[74] Chen2019 Hybrid, GRU � � - IKNSK F1@5, F1@10, R@10
[76] Misawa2019 MultiDec, GRU � � � IKK F1@5, F1@10, dist1, dist2
[78] Wang2019 NTM, GRU � � - Blogs F1@1, F1@3, F1@5
[55] Yuan2018 catSeq, LSTM � � - IKNSK F1@5, F1@10, F1@M , F1@V
[79] Chan2019 RL, GRU � � - IKNSK F1@5, F1@M

In [78] they create another hybrid system that infuses
topical information into the encoder-decoder framework. They
use an NTM (Neural Topic Model) for grasping the latent topic
aspects of the input text. The later go into the decoder, together
with the context representation of the input obtained by the
encoder. Their learning objective is modified accordingly to
balance the effects of the NTM and the KG encoder-decoder.
Authors conduct experiments on blog data such as Twitter,
Weibo (a Chinese microblogging website) and StackExchange.
They compare tag prediction of their method against various
previous methods such as CopyRNN, TG-Neg, and CorrRNN,
reporting considerable improvements in terms of F1@1, F1@3
and F1@5 scores.

All the above works generate a fixed number of keyphrases
per document. This is not optimal and realistic. In real scien-
tific literature, different documents are paired with keyphrase
sets of different lengths. To overcome this limitation and
further improve the diversity of the produced keyphrases,
authors of [55] propose a seq2seq generator equipped with
advanced features. They first join a variable number of key
terms as a single sequence and consider it as the target for
sequence generation (sequence-to-concatenated-sequences or
catSeq). By decoding a single of those sequences for each
sample (e.g., taking top beam sequence from beam search)
their model can produce variable-length keyphrase sequences
for each input sample.

For a higher diversity in output sequences, they apply
orthogonal regularization on the decoder hidden states, en-
couraging them to be distinct from each other. Authors use
the same data setup as in [12] and compare against CopyRNN
and TG-Net. Besides using F1@5, F1@10, they also propose
two novel evaluation metrics: F1@M , where M is the number
of all keyphrases generated by the model for each data point,
and F1@V , where V is the number of predictions that gives
the highest F1@V score in the validation set. Considerable
improvements are achieved in terms of F1@10 (top score
0.361), F1@M (top score 0.362) and F1@V (top score 0.362)
on KP20k test set.

C. Reinforcement Learning Perspective

Given that the above catSeq model tends to generate fewer
keywords than the ground-truth, authors of [79] reformulate
it from the RL (Reinforcement Learning) perspective which

has also been applied recently in several text summarization
works like [80], [81] or [82] and similar seq2seq applications
described in [82]. The model is stimulated to generate enough
keyphrases employing an adaptive reward function that is
based on recall (not penalized by incorrect predictions) in
undergeneration scenarios and F1 (penalized by more incor-
rect predictions) in overgeneration scenarios. They use GRU
instead of LSTM but keep most of the other implementation
details the same as those of [55].

The authors train on KP20k and test on IKNSK. They
compare the RL-implemented catSeq, CopyRNN, and TG-
Net against their original versions and report improvements
from the RL implementation in all cases on both F1@5 and
F1@M with peak scores 0.321 and 0.386 respectively. The
RL perspective is thus highly effective for enhancing existing
AKG methods. Another contribution of their work is the novel
comparison scheme they propose, with name variation sets
for each ground-truth keyphrase. If a predicted keyphrase
matches any name variation of a ground-truth keyphrase, it
is considered as a correct prediction.

V. KEYPHRASING RESEARCH PATTERNS

There are several patterns regarding technical and other
aspects of research that show up from time to time. In
this section, we briefly summarize some of such trends we
identified in KG and TS (Text Summarization) research of the
last two decades.

A. Experimental Patterns

All of the primary studies we consulted perform some
text preprocessing steps such as tokenization and lowercasing.
Most papers do not report the tokenization utility they use. A
few of them like [75] and [78] report to have used Stanford
CoreNLP of [63] or NLTK (www.nltk.org) for tokenizing. It
is also common to find KE studies like [46], [24], and [9] that
perform POS tagging and include the tags in the feature set
they utilize.

A reduced vocabulary size is important to have decent
AKG resutls within a reasonable computation time. For this
reason, authors of many recent AKG studies like [12], [71],
[68], [73], [75] and [79] replace all digit tokens with the
symbol 〈digit〉. Stemming is also commonly used in studies
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like [12], [75], [74], [24], [71] and [73] to have the predicted
and golden keywords properly compared during evaluation. A
stemmer that is reported is the one of [83]. There are still a
few works like [13] that do not report to use stemming or any
other transformation in the evaluation step.

The motivation or objective of the authors is the same
in most of the studies: producing meaningful and accurate
keyphrases that are similar to those set by humans which are
used as ground-truth. Besides that, there are a few studies
such as [76] or [71] that aim for a higher diversity or
avoiding duplicates in the produced keyphrases. Producing a
different number of keyphrases for each document is another
requirement. It was met just recently by the model of [55].

Overcoming the need for labeled or domain-specific data
was also important for certain studies like [73] and [10]. Few
works such as [8] and [68] focus on computational efficiency
and generation speed while trying to keep state-of-the-art
accuracy. Other works such as [79] and [33] are based on
neural networks and attempt to generate more keyphrases (the
former) or automate feature crafting (the latter). Finally, [46]
creates a framework for implementing popular methods instead
of proposing a new one.

All studies do perform a formal evaluation of their con-
tribution with the exception of [11] where they highlight the
functional features of their method by means of a practical
demonstration. In the evaluation phase, they usually compare
with similar methods used as baselines. Regarding the choice
of baselines, we observed a similar trend in both extractive
and abstractive KG studies. The earlier extractive works such
as [1], [6] or [26] do not compare against other methods. In few
cases such as in [24] and [7], they compare different versions
(or configuration choices) of their basic method.

The more recent extractive works like [1], [8], [34], [29],
[33], [36], and [37] compare against the earlier ones. Similarly,
the earlier abstractive KG studies such as [12] and [53]
compare against extractive methods only. Instead, some of the
latest abstractive works such as [75], [13] or [79] compare
against both extractive and abstractive KG methods.

B. Keyphrasing vs. Summarizing

Some interesting research patterns we observed are related
to the strict analogy between the dynamics of TS and KG re-
search in the last two decades. Extensive research began in the
late 90s on both tasks. Early TS works were mostly extractive,
same as the KG works of the same time (commonly called
KE studies). They were usually based on lexical resources
and features, clustering algorithms and similarity measures
(e.g., [84], [85] or [86]). Several supervised TS works such
as [87] and [88] or graph-based TS works like [89], [90]
and [91] bloomed, in full analogy with the KG works of
Sections II-A and II-B.

The same development path has been followed in the case
of abstractive studies as well. The encoder-decoder framework
equipped with attention was first used by [92] for title gen-
eration. In analogy with the studies of Section IV-B, many
studies like [17] or [93] added copying mechanism whereas
[18] was the first that used coverage. All these innovations
significantly improved the results. The trend towards the RL

approach makes no exception. It was first introduced in text
summarization studies like [81] and [94]. As described in
Section IV-C, It has been applied in AKG just recently.

There are still a few differences between TS and KG
research that are related to the nature of these tasks. First,
as presented in Section III-A, KG research works have mostly
used scientific paper data. TS studies, on the other hand, have
been mostly based on news articles (e.g., [95], [96] or [97]).
In fact, most of the popular TS datasets like those described
in [98], [99], and [93] are made up of online news articles
preprocessed by the authors.

Another difference lies in the metrics that are used to
perform the evaluation of the two tasks. KG methods are
usually assessed by means of F1 and recall whereas TS
studies use more complex scores such as ROUGE of [100]
or sometimes even BLEU of [101].

VI. DISCUSSION

This study presents a survey of the earlier extractive KG
methods and the recent cutting-edge abstractive ones that are
based on the encoder-decoder framework. We first describe
in brief some of the pivotal KE works which are supervised,
unsupervised or graph-based. They were very successful and
shaped the research field in the 2000s, mainly because of their
speed and simplicity.

We then present the available keyphrase datasets that are
popular in the literature and describe OAGKX, a huge article
data collection that is released with this paper. It can be used
as a data supplement for training deep learning models that
require millions of samples. It might as well serve as a source
for creating derivative datasets of scientific articles from more
specific research disciplines.

The shift to the recent abstractive methods was mainly
pushed from the need to annotate documents with keyphrases
that do not necessarily appear in the original text. The avail-
ability of the easy-to-implement encoder-decoder framework
was another motive. Advanced mechanisms such as attention,
copying and coverage were added one by one and improved
not only the accuracy but also the diversity of the produced
keyphrases.

We further observed several similar patterns between TS
and KG research. They include the transit from extractive
to abstractive strategies, the use of technically advanced
mechanisms (e.g., attention, copying, and coverage), and the
reformulation of the methods from the reinforcement learning
perspective. The latter trend is very promising and we expect
to see many works in the near future exploring it in several
ways for achieving different goals.
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Abstract

Authors’ keyphrases assigned to scientific ar-

ticles are essential for recognizing content and

topic aspects. Most of the proposed supervised

and unsupervised methods for keyphrase gen-

eration are unable to produce terms that are

valuable but do not appear in the text. In this

paper, we explore the possibility of consider-

ing the keyphrase string as an abstractive sum-

mary of the title and the abstract. First, we

collect, process and release a large dataset of

scientific paper metadata that contains 2.2 mil-

lion records. Then we experiment with pop-

ular text summarization neural architectures.

Despite using advanced deep learning models,

large quantities of data and many days of com-

putation, our systematic evaluation on four test

datasets reveals that the explored text sum-

marization methods could not produce bet-

ter keyphrases than the simpler unsupervised

methods, or the existing supervised ones.

1 Introduction

A valuable concept for searching and categoriz-

ing scientific papers in digital libraries is the

keyphrase (we use keyphrase and keyword inter-

changeably), a short set of one or few words that

represent concepts. Scientific articles are com-

monly annotated with keyphrases based on tax-

onomies of concepts and the authors’ judgment.

Finding keyphrases that best describe the contents

of a document is thus essential and rewarding.

Most of the proposed keyphrase extraction so-

lutions tend to be unsupervised (Florescu and

Caragea, 2017; Nguyen and Luong, 2010; Rose

et al., 2010; Bougouin et al., 2013; Campos et al.,

2018) and generate terms by selecting the most ap-

propriate candidates, ranking the candidates based

on several features and finally returning the top

N . Another way is to utilize datasets of texts and

keywords for training supervised models with lin-

guistic or other features to predict if candidates

are keywords or not (Witten et al., 1999; Turney,

2000; Medelyan, 2009; Hulth, 2003).

All above methods propose N keyphrases for

each article which are joined together with “,” (or

other separator like “;”) to form the keyphrase

string of that article. They suffer from various

problems or discrepancies. First, they are unable

to find an optimal value for N and require it as

a preset parameter. Furthermore, semantic and

syntactic properties of article phrases are analyzed

separately. The meaning of paragraphs, sections

or entire document is thus missed. Lastly, only

phrases that do appear in the article are returned.

Meng et al. (2017) recently proposed a deep su-

pervised keyphrase generation solution trained on

a big dataset. It successfully solves the last two

problems above, but not the first one.

Motivated by recent advances in neural ma-

chine translation and abstractive text summariza-

tion (Vaswani et al., 2017; Foster et al., 2018; Rush

et al., 2015; See et al., 2017), in this paper, we

explore the possibility of considering keyphrase

generation as an abstractive text summarization

task. Instead of generating keywords one by one

and linking them to form the keyphrase string, we

consider the later as an abstractive summary of

the concatenated paper title and abstract. Differ-

ent recently-proposed text summarization archi-

tectures are tried on four test datasets of article

keyphrases (Tanti et al., 2017; Rush et al., 2015;

See et al., 2017). We trained them with a newly

created dataset of 2.2 million article titles, ab-

stracts and keyphrase strings that we processed

and released.1

The selected text summarization models are

compared with popular unsupervised and super-

vised methods using ROUGE (Lin, 2004) and full-

match F1 metrics. The results show that though

1http://hdl.handle.net/11234/1-2943
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trained with large data quantities for many days,

the tried text summarization methods could not

produce better keywords than the existing super-

vised or deep supervised predictive models. In our

opinion, a possible explanation for this is the fact

that the title and the abstract may not carry suf-

ficient topical information about the article, even

when joined together. In contrast, when assigning

keywords annotations of their paper, authors are

highly influenced by the topic aspects of it.

This paper carries several contributions, de-

spite the fact that no progressive result scores

were reached. It is the first work that considers

keyphrase generation as an abstractive text sum-

marization task. We produced a large dataset of

article titles, abstracts, and keywords that can be

used for keyword generation, text summarization

or similar purposes. Finally, we evaluated the per-

formance of different neural network architectures

on summarization of article keyword strings, com-

paring them with popular unsupervised methods.

2 Scientific Paper Datasets

Because of the open source and open data initia-

tives, many public datasets from various domains

can be found online (Çano and Morisio, 2015).

Among the several collections of scientific arti-

cles, some of them have gained considerable popu-

larity in research literature. In Meng et al. (2017),

we found a recent and big collection of 20K pa-

per abstracts and keyphrases. These metadata be-

long to articles of computer science from ACM

Digital Library, ScienceDirect, and Web of Sci-

ence. In Hulth (2003), we found a collection of

2000 (1500 for train/val and 500 for testing) ab-

stracts in English, together with titles and authors’

keywords. The corresponding articles were pub-

lished from 1998 to 2002 and belong to the dis-

cipline of Information Technology. Furthermore,

Krapivin et al. (2010) released a dataset of 2000

(1600 for train/val and 400 for testing) full articles

published by ACM from 2003 to 2005 in Com-

puter Science domain. More information about

similar keyphrase data collections or other avail-

able resources can be found in Hasan and Ng

(2014) and in online repositories.2

Regarding text summarization, some of the

most popular datasets are: DUC-2004 3 mainly

2https://github.com/LIAAD/

KeywordExtractor-Datasets
3https://duc.nist.gov/duc2004/

Attribute Train Val Test Fullset

Records 2M 100K 100K 2.2M

Keyphrases 12M 575K 870K 13.4M

Title tokens 24M 1.3M 1.6M 27M

Abstract tokens 441M 21M 37M 499M

Av. Keyphrase 6 5.8 8.7 6.1

Av. Title 12.1 12.8 15.9 12.3

Av. Abstract 220 211 372 227

Table 1: Statistics of OAGK dataset

used for testing, English Gigaword (Napoles et al.,

2012), CNN/Daily Mail described in Section 4.3

of (Nallapati et al., 2016) and Newsroom, a het-

erogeneous bundle of news articles described in

Grusky et al. (2018). These datasets are frequently

used for the task of predicting titles from abstracts

or short stories. However, no keyphrases are pro-

vided; they do not serve to our purpose. Arnet-

Miner is a recent attempt to crawl scientific paper

data from academic networks (Tang et al., 2008).

The system extracts profiles of researchers from

digital resources and integrates their data in a com-

mon network. A spin-off is the Open Academic

Graph (OAG) data collection (Sinha et al., 2015).

To produce a usable collection for our purpose,

we started from OAG. We extracted title, abstract

and keywords. The list of keywords was trans-

formed into a comma-separated string and a lan-

guage identifier was used to remove records that

were not in English. Abstracts and titles were

lowercased, and Stanford CoreNLP tokenizer was

used for tokenizing. Short records of fewer than

20 tokens in the abstract, 2 tokens in the title and

2 tokens in the keywords were removed. For the

test portion, we selected documents of at least 27,

3 and 2 tokens in each field. Data preprocessing

stopped here for the release version (no symbol

filtering), given that many researchers want to fil-

ter text in their own way. This new dataset named

OAGK can be used for both text summarization

(predicting title from abstract) and keyphrase ex-

traction (unsupervised, supervised or deep super-

vised) tasks. Some rounded measures about each

set of released data are presented in Table 1.

3 Keyphrase Extraction Strategies

3.1 Unsupervised and Supervised Methods

TOPICRANK is an extractive method that creates

topic clusters using the graph of terms and phrases

(Bougouin et al., 2013). Obtained topics are then

ranked according to their importance in the docu-

ment. Finally, keyphrases are extracted by pick-
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ing one candidate from each of the most important

topics. A more recent, unsupervised and feature-

based method for keyphrase extraction is YAKE!

(Campos et al., 2018). It heuristically combines

features like casing, word position or word fre-

quency to generate an aggregate score for each

phrase and uses it to select the best candidates.

One of the first supervised methods is KEA

described by Witten et al. (1999). It extracts

those candidate phrases from the document that

have good chances to be keywords. Several fea-

tures like TF-IDF are computed for each candi-

date phrase during training. In the end, Naı̈ve

Bayes algorithm is used to decide if a candidate

is a keyword or not (binary classification). An

improvement and generalization of KEA is MAUI

(Medelyan, 2009). Additional features are com-

puted, and bagged decision trees are used instead

of Naı̈ve Bayes. The author reports significant per-

formance improvements in precision, recall and F1

scores.

The above keyphrase extraction methods and

others like Florescu and Caragea (2017) or

Nguyen and Luong (2010) reveal various prob-

lems. First, they are not able to find an optimal

value for N (number of keywords to generate for

an article) based on article contents and require it

as a preset parameter. Second, the semantic and

syntactic properties of article phrases (considered

as candidate keywords) are analyzed separately.

The meaning of longer text units like paragraphs

or entire abstract/paper is missed. Third, only

phrases that do appear in the paper are returned.

In practice, authors do often assign words that are

not part of their article.

Meng et al. (2017) overcome the second and

third problem using an encoder-decoder model

(COPYRNN) with a bidirectional Gated Recurrent

Unit (GRU) and a forward GRU with attention.

They train it on a datasets of hundred thousands

of samples, consisting of abstract-keyword (one

keyword only) pairs. The model is entirely data-

driven and can produce terms that may not appear

in the document. It still produces one keyword at

a time, requiring N (first problem) as parameter to

create the full keyphrase string.

3.2 Text Summarization Methods

To overcome the three problems mentioned in Sec-

tion 3.1, we explore abstractive text summariza-

tion models proposed in the literature, trained with

article abstracts and titles as sources and keyword

strings as targets. They are expected to learn and

paraphrase over entire source text and produce a

summary in the form of a keyphrase string with

no need for extra parameters. They should also

introduce new words that do not appear in the ab-

stract. Two simple encoder-decoder variants based

on LSTMs are described in Figure 3 of Tanti et al.

(2017). MERGE (Figure 3.a) encodes input and the

current summary independently and merges them

in a joint representation which is later decoded to

predict the next summary token. INJECT model

(Figure 3.b) on the other hand injects the source

document context representation to the encoding

part of the current summary before the decoding

operation is performed.

ABS is presented in Figure 3.a of Rush et al.

(2015). The encoder (Figure 3.b) takes in the in-

put text and a learned soft alignment between the

input and the summary, producing the context vec-

tor. This soft alignment is the attention mechanism

(Bahdanau et al., 2014). To generate the summary

words, Rush et al. apply a beam-search decoder

with a window of K candidate words in each po-

sition of the summary.

Pointer-Generator network (POINTCOV) de-

picted in Figure 3 of See et al. (2017) is similar

to ABS. It is composed of an attention-based en-

coder that produces the context vector. The de-

coder is extended with a pointer-generator model

that computes a probability pgen from the context

vector, the decoder states, and the decoder output.

That probability is used as a switch to decide if the

next word is to be generated or copied from the

input. This model is thus a compromise between

abstractive and extractive (copying words from in-

put) models. Another extension is the coverage

mechanism for avoiding word repetitions in the

summary, a common problem of encoder-decoder

summarizers (Tu et al., 2016).

4 Results

We performed experiments with the unsupervised

and supervised methods of Section 3 on the first

three datasets of Section 2 and on OAGK. All

supervised methods were trained with the 2M

records of OAGK train part. An exception was

MAUI which could be trained on 25K records at

most (memory limitation). In addition to the pro-

cessing steps of Section 2, we further replaced

digit symbols with # and limited source and tar-
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Hulth (500) Krapivin (400) Meng (20K) OAGK (100K)
Method F1@5 F1@7 F1@5 F1@7 F1@5 F1@7 F1@5 F1@7

YAKE! 19.35 21.47 17.98 17.4 17.11 15.19 15.24 14.57

TOPICRANK 16.5 20.44 6.93 6.92 11.93 11.72 11.9 12.08

MAUI 20.11 20.56 23.17 23.04 22.3 19.63 19.58 18.42

COPYRNN 29.2 33.6 30.2 25.2 32.8 25.5 33.06 31.92

MERGE 6.85 6.86 4.92 4.93 8.75 8.76 11.12 13.39

INJECT 6.09 6.08 4.1 4.11 8.09 8.09 9.61 11.22

ABS 14.75 14.82 10.24 10.29 12.17 12.09 14.54 14.57

POINTCOV 22.19 21.55 19.87 20.03 20.45 20.89 22.72 21.49

Table 2: Full-match scores of predicted keyphrases by various methods

Hulth (500) Krapivin (400) Meng (20K) OAGK (100K)
Method R1F1 RLF1 R1F1 RLF1 R1F1 RLF1 R1F1 RLF1

YAKE! 37.48 24.83 26.19 18.57 26.47 17.36 20.38 14.54

TOPICRANK 32.0 20.36 14.08 11.47 21.68 15.94 17.46 13.28

MAUI 36.88 27.16 28.29 23.74 34.33 28.12 32.16 25.09

COPYRNN 44.58 35.24 39.73 30.29 42.93 34.62 43.54 36.09

MERGE 15.19 9.45 9.66 7.14 16.53 12.31 17.3 14.43

INJECT 14.15 8.81 9.58 6.79 15.6 11.21 14.3 11.08

ABS 27.54 19.48 25.59 18.2 28.31 22.16 29.05 25.77

POINTCOV 37.16 33.69 35.81 29.52 38.47 35.06 38.66 34.04

Table 3: Rouge scores of predicted keyphrases by various methods

get text lengths to 270 and 21 tokens, respectively.

Vocabulary size was also limited to the 90K most

frequent words.

The few parameters of the unsupervised meth-

ods (length and windows of candidate keyphrases

for YAKE!, ranking strategy for TOPICRANK)

were tuned using the validation part of each

dataset. For the evaluation, we used F1 score of

full matches between predicted and authors’ key-

words. Given that the average number of key-

words in the data is about 6, we computed F1

scores on top 5 and top 7 returned keywords

(F1@5, F1@7).

Before each comparison, both sets of terms

were stemmed with Porter Stemmer and dupli-

cates were removed. In the case of summa-

rization models, keyphrases were extracted from

their comma-separated summaries. We also

computed ROUGE-1 and ROUGE-L F1 scores

(R1F1, RLF1) that are suitable for evaluating

short summaries (Lin, 2004). The keywords ob-

tained from the unsupervised methods were linked

together to form the keyphrase string (assumed

summary). This was later compared with the orig-

inal keyphrase string of the authors.

Full-match results on each dataset are reported

in Table 2. From the unsupervised models, we

see that YAKE! is consistently better than TOPI-

CRANK. The next two supervised models perform

even better, with COPYRNN being discretely su-

perior than MAUI.

Results of the four summarization models seem

disappointing. MERGE and INJECT are the worst

on every dataset, with highest score 13.39 %. Var-

ious predictions of these models are empty or very

short, and some others contain long word repeti-

tions which are discarded during evaluation. As a

result, there are usually fewer than five predicted

keyphrases. This explains why F1@5 and F1@7

scores are very close to each other.

ABS works slightly better reaching scores from

10.24 to 14.75 %. POINTCOV is the best of the

text summarizers producing keyphrase predictions

that are usually clean and concise with few repe-

titions. This is probably the merit of the coverage

mechanism. There is still a considerable gap be-

tween POINTCOV and COPYRNN. Rouge-1 and

Rouge-L F1 scores are reported in Table 3. COPY-

RNN is still the best but POINTCOV is close. ABS

scores are also comparable to those of MAUI and

YAKE!. TOPICRANK, MERGE and INJECT are

again the worst.

Regarding the test datasets, the highest result

scores are achieved on Hulth and the lowest on

Krapivin. We checked some samples of the later

and observed that each of them contains separa-

tion tags (e.g., –T, –A, –B, Figure etc.) for indi-

cating different parts of text in the original paper.

A more intelligent text cleaning step may be re-

quired on those data.
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5 Discussion

The results show that the tried text summariza-

tion models perform poorly on full-match key-

word predictions. Their higher ROUGE scores

further indicate that the problem is not entirely in

the summarization process. Observing a few sam-

ples, we found differences between the two eval-

uation strategies. For example, suppose we have

the predicted keyword “intelligent system” com-

pared against authors’ keyword “system design”.

Full-match evaluation adds nothing to F1@5 and

F1@7 scores. However, in the case of ROUGE

evaluation, the prediction is partially right and a

certain value is added to R1F1 score. In follow up

works, one solution to this discrepancy could be to

try partial-match comparison scores like overlap

coefficients.

Another detail that has some negative effect in

full-match scores is keyword separation. The pre-

dicted string:

“health care,,,,immune system; human -;

metabolism, immunity,,,,”

produces [“health care”, “immune system”, “hu-

man”, “metabolism”, “immunity”] as the list of

keywords after removing the extra separators. In-

stead, we expected [“health care”, “immune sys-

tem”, “human metabolism”, “immunity”]. This

again penalizes full-match scores but not R1F1

score. A more intelligent keyword separation

mechanism could thus help for higher full-match

result scores.

A third reason could be the fact that we used

the title and abstract of papers only. This is actu-

ally what most researchers do, as it is hard to find

high quantities of article full texts for free. Article

body is usually restricted. Abstractive summariza-

tion methods could still benefit from longer source

texts. Using default hyperparameters for the mod-

els may have also influenced the results. Some pa-

rameter tuning could be beneficial, though.

The main reason could be even more fundamen-

tal. We trained abstractive summarization mod-

els on abstracts and titles with authors’ keyphrases

considered as golden ones. There might be two is-

sues here. First, when setting their keywords, au-

thors mostly consider the topical aspects of their

work rather than paraphrasing over the contents.

Abstracts and titles we used may not carry enough

topical information about the article, even when

joined together. Second, considering authors’ key-

words as golden ones may not be reasonable. One

solution is to employ human experts and ask them

to annotate each article based on what they read.

This is however prohibitive when hundred thou-

sands of samples are required. Extensive experi-

ments on this issue may provide different facts and

change the picture. For the moment, a safe way to

go seems developing deep supervised generative

models like the one of Meng et al. (2017) that pre-

dict one keyphrase at each step independently.

6 Conclusions

In this paper, we experimented with various un-

supervised, supervised, deep supervised and ab-

stractive text summarization models for predict-

ing keyphrases of scientific articles. To the best

of our knowledge, this is the first attempt that ex-

plores the possibility of conceiving article string

of keywords as an abstractive summary of ti-

tle and abstract. We collected and produced a

large dataset of 2.2 million abstracts, titles and

keyphrase strings from scientific papers available

online. It can be used for future text summariza-

tion and keyphrase generation experiments. Sys-

tematic evaluation on four test datasets shows that

the used summarization models could not pro-

duce better keywords than the supervised predic-

tive models. Extensive experiments with more ad-

vanced summarizaiton methods and better param-

eter optimization may still reveal a different view

of the situation.
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Abstract

Using data-driven models for solving text

summarization or similar tasks has become

very common in the last years. Yet most of

the studies report basic accuracy scores only,

and nothing is known about the ability of the

proposed models to improve when trained on

more data. In this paper, we define and pro-

pose three data efficiency metrics: data score

efficiency, data time deficiency and overall

data efficiency. We also propose a simple

scheme that uses those metrics and apply it

for a more comprehensive evaluation of pop-

ular methods on text summarization and title

generation tasks. For the latter task, we pro-

cess and release a huge collection of 35 million

abstract-title pairs from scientific articles. Our

results reveal that among the tested models, the

Transformer is the most efficient on both tasks.

1 Introduction

Text summarization is the process of distilling the

most noteworthy information in a document to

produce an abridged version of it. This task is

earning considerable interest, since shorter ver-

sions of long documents are easier to read and

save us time. There are two basic ways to sum-

marize texts. Extractive summarization selects the

most relevant parts of the source document and

combines them to generate the summary. In this

case, the summary contains exact copies of words

or phrases picked from the source. Abstractive

summarization, on the other hand, paraphrases the

information required for the summary instead of

copying it verbatim. This is usually better, but also

more complex and harder to achieve.

There has been a rapid progress in ATS (Ab-

stractive Text Summarization) over the last years.

The vanilla encoder-decoder with bidirectional

LSTMs (Hochreiter and Schmidhuber, 1997) is

now enhanced with advanced mechanisms like at-

tention (Bahdanau et al., 2014) which has been

widely embraced. It allows the model to focus

on various parts of the input during the gener-

ation phase and was successfully used by Rush

et al. (2015) to summarize news articles. Pointing

(copying) is another mechanism that helps to al-

leviate the problem of unknown words (Gulcehre

et al., 2016; Gu et al., 2016). Moreover, coverage

(Tu et al., 2016) and intra-attention (Paulus et al.,

2017) were proposed and utilized to avoid word

repetitions, producing more readable summaries.

RL (Reinforcement Learning) concepts like policy

gradient (Rennie et al., 2017) were recently com-

bined into the encoder-decoder architecture, alle-

viating other problems like train/test inconsistency

and exposure bias (Paulus et al., 2017; Chen and

Bansal, 2018).

All these developments helped to boost the ATS

ROUGE (Lin, 2004) scores from about 30 % in

Rush et al. (2015) to about 41 % in Paulus et al.

(2017). This is an increase of roughly 37 % in

the last three years. Yet all the studies evaluate

the methods using datasets of a fixed size. Do-

ing so they tell us nothing about the expected per-

formance1 of the models when trained with more

data. Moreover, training time is rarely reported.

We believe that this evaluation practice of data-

driven models is incomplete and data efficiency

metrics should be computed and reported.

In this paper, we propose three data efficiency

metrics, namely data score efficiency, data time

deficiency and overall data efficiency. The first

two represent the output quality gain and the train-

ing time delay of the model per additional data

samples. The third is the ratio between them and

reflects the overall efficiency of the models w.r.t

the training data. We also suggest a simple scheme

that considers several values for each of the above

metrics, together with the basic accuracy score, in-

1We use “performance” solely for the output quality, not
the time needed to train the model or obtain the output.
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stead of reporting only the latter. The proposed

scheme and the metrics can be used for a more de-

tailed evaluation of supervised learning models.

Using them, we examine various recently pro-

posed methods in two tasks: text summariza-

tion using the popular CNNDM (CNN/Daily Mail,

Nallapati et al., 2016) dataset and title genera-

tion of scientific articles using OAGS, a novel

dataset of abstract-title pairs that we processed

and released.2 According to our results, the best-

performing and fastest methods in the two datasets

are those of Paulus et al. (2017) and Chen and

Bansal (2018). Regarding score and time effi-

ciency, Transformer (Vaswani et al., 2017) is dis-

tinctly superior. In the future, we will examine the

Transformer model on more data with different pa-

rameter setups. Applying our evaluation scheme

to related tasks such as MT (Machine Translation)

could also be beneficial.

Overall, this work brings the following main

contributions: (i) We define and propose three data

efficiency metrics and a simple evaluation scheme

that uses them for a more comprehensive evalua-

tion of data-driven learning methods. (ii) We use

the scheme and metrics to benchmark some of the

most recently proposed ATS methods and discuss

their training times, ROUGE, and data efficiency

scores. (iii) Finally, a huge collection of about 35

million scientific paper abstracts and titles is pre-

pared and released to the community. To our best

knowledge, this is the largest data collection pre-

pared for title generation experiments.

2 Data Efficiency Metrics

2.1 Related Work

Training data efficiency of the data-driven learn-

ing models is little considered in the literature. An

early work is that of Lawrence et al. (1998) who

investigate the generalization ability of neural net-

works with respect to the complexity of the ap-

proximation function, the size of the network and

the degree of noise in the training data. In the

case of latter factor, they vary the size of the train-

ing data and the levels of Gaussian noise added

to those data concluding that ensemble techniques

are more immune to the increased noise levels.

Performance variations w.r.t the training data sizes

are not considered, though.

Al-Jarrah et al. (2015) review the research lit-

erature focusing in the computational and energy

2http://hdl.handle.net/11234/1-3043

efficiency of the data-driven methods. They par-

ticularly consider data-intensive application areas

(e.g., big data computing) and how sustainable

data models can help for a maximal learning ac-

curacy with minimal computational cost and effi-

cient processing of large volumes of data.

Boom et al. (2016) examine a character-level

RNN (Recurrent Neural Network) used to predict

the next character of a text given the previous in-

put characters. They assess the evolution of the

network performance (in terms of perplexity) in

four train and prediction scenarios as a function of

the training time and input training sequences. Ac-

cording to their results, the efficiency of the model

is considerably influenced by the chosen scenario.

A similar experiment is conducted by Riou et al.

(2019) who explore reinforcement learning con-

cepts on the task of neural language generation.

They compare different implementations reporting

not only performance scores, but also their evolu-

tion as a function of the cumulated learning cost

and the training data size.

The most relevant work we found is the one by

Hlynsson. et al. (2019) who propose an experi-

mental protocol for comparing the data efficiency

of a CNN (Convolution Neural Network) with that

of HiGSFA (Hierarchical information-preserving

Graph-based Slow Feature Analysis). They give

an informal definition of data efficiency consid-

ering it as performance as a function of training

set size. Three character recognition challenges

are defined and the two methods are trained on

increasing amounts of data samples reporting the

corresponding accuracy scores.

2.2 Proposed Data Efficiency Metrics

Despite the experimental results and insights they

bring, the above studies are still task and method

specific. Moreover, their computation schemes are

not generic or transferable and no formalization of

the data efficiency is given. In this section, we de-

fine three novel and useful data efficiency metrics.

Suppose we train a data-driven method M on

dataset D to solve task T and we test it based

on performance score S. We also assume that the

quality of the data samples in different intervals

of D is homogeneous. In practice, this could be

achieved by shuffling D before starting the exper-

iments. For a certain training data size d, it takes

t seconds to train the model md until convergence

(i.e. until no further gains are observed with more
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training time) and the score obtained by testing it

on a standard and independent test dataset of a

fixed size is s. We expect that for a certain in-

crease ∆d of training samples fed to M, it will re-

quire an extra time ∆t to converge, and the result-

ing model md+∆d will attain an extra ∆s score.

We can thus define and compute data score effi-

ciency (score gain per additional data samples) Σ

of method M as:

Σ = ∆s / ∆d (1)

It is a measure of how smartly or effectively M in-

terprets the extra data samples, or how well its per-

formance score scales w.r.t the training data. Simi-

larly, data time deficiency (the inverse of data time

efficiency) Θ of M will be:

Θ = ∆t / ∆d (2)

This measures how slowly or lazily M interprets

the additional samples.3 Given two train and test

runs (original and enlarged datasets) characterized

by the above measures (training data: d, d + ∆d;

training times: t, t + ∆t; achieved scores: s, s +
∆s), we define the overall data efficiency E as:

E = Σ / Θ = ∆s / ∆t (3)

It is a measure of how smartly and quickly the

models of M utilizes the data of D on task T.

In practice, using the absolute increments

∆s, ∆t, and ∆d may produce small values of Σ

which are hard to interpret and work with. Further-

more, Θ and E use training times which depend on

the computing conditions (e.g., hardware setups).

As a result, they are hardly reproducible across

different computing environments. To overcome

these limitations, we can instead use the relative

increments ∆s/s, ∆t/t and ∆d/d, computing the

corresponding relative data efficiency metrics as:

σ =
∆s / s

∆d / d
(4)

θ =
∆t / t

∆d / d
(5)

ǫ =
σ

θ
=

∆s / s

∆t / t
(6)

3Our data time efficiency (∆d / ∆t) should not be con-
fused with the training throughput as defined by Popel and
Bojar (2018) for machine translation which reflects the time
required for one model update given the additional data. Our
∆t is the increase in the overall training time till convergence
on the enlarged dataset in comparison with the original one.

These relative metrics and their values are practi-

cally easier to interpret and work with. Further-

more, they are transferable or reproducible in dif-

ferent computing setups which is important for

cross-interpretation of the experimental results.

We can express σ and θ values in percent and ǫ
values as their ratio.

2.3 Assorted Remarks

The metrics presented above can be used to evalu-

ate different data-driven methods or compare sev-

eral parameter configurations of the same basic

method (algorithm, neural network, etc.) and help

us find the optimal one. In this sense, they are

generic and task-independent. However, it is im-

portant to note that they do not represent “univer-

sal” or global attributes of method M. They are in-

stead linear approximations that can give us local

characterizations of M in certain intervals of D. In

other words, high Σ (or σ) values of M in some

intervals of D do not necessarily assure a decent

generalization of M.

It is also important not to confuse the data effi-

ciency with performance or quality. In our daily

intuition, we often tend to consider highly effi-

cient machines, techniques or methods as well-

performing ones. Instead, according to the above

definitions, a model can perform poorly but still

be highly efficient w.r.t the training data. This

happens if its performance scores on increasing

training data cuts are all very low, but grow very

quickly from one assessment to the next. A model

can also yield high scores which grow very slowly

on increasing data sizes (thus relatively small Σ

and σ values). In this case it is a well-performing

(maybe even the best) model on those data, but not

a data efficient one.

From the data efficiency viewpoint, the best

models would obviously be those of higher data

score efficiency and lower data time deficiency, or

higher overall data efficiency. In practice, perfor-

mance is generally the most desired characteristic.

As a result, data score efficiency values (Σ, σ or

both) should be more important and worthy to re-

port in most of the cases. Since models are trained

only once, θ and ǫ should be less relevant. Nev-

ertheless, they might be useful from a technical or

theoretical perspective. They can be used for com-

paring different methods, comparing different pa-

rameter configurations of a method, or for trying

run time optimizations.
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Split Rec SrcL TgtL Voc Used

C
N

N
D

M

Train1 96K 784 54 380K 49K
Train2 192K 780 57 555K 49K
Train3 287K 786 55 690K 49K
Valid 13K 769 61 – –
Test 11K 787 58 – –

O
A

G
S

Train1 500K 183 9 1.2M 98K
Train2 1M 205 10 2.1M 98K
Train3 1.5M 211 11 2.8M 98K
Valid 10K 231 13 – –
Test 10K 237 12 – –

Table 1: Statistics of used datasets. For each split, it

shows the number of records (Rec), average length of

source and target texts in tokens (SrcL, TgtL), total vo-

cabulary size (Voc), and the number of most frequent

words that were used (Used).

Manning et al. (2014). Each headline was paired

with the first sentence of the corresponding arti-

cle to create the training base for the experiments.

DUC-2004 is another dataset4, mostly used as an

evaluation baseline, given its small size. It con-

sists of 500 document-summary pairs curated by

human experts. Newsroom is a recent and hetero-

geneous bundle of about 1.3 million news articles

(Grusky et al., 2018).

CNNDM has become the most popular dataset

for text summarization (Nallapati et al., 2016). It

provides a large set of news articles and the cor-

responding multi-sentence summaries, unlike the

three above that contain one-sentence summaries

only. It is thus more suitable for training and test-

ing summarization models of longer texts.

Title generation task, on the other hand, requires

data samples of shorter texts and one-sentence ti-

tles. Collections of abstracts and titles from scien-

tific articles are well suited for exploring it. KP20k

is a collection of 20K records of scientific paper

metadata (title, abstract and keywords) presented

by Meng et al. (2017). The metadata belong to ar-

ticles of computer science from ACM Digital Li-

brary, ScienceDirect, and Web of Science.

The demand for more and more data has mo-

tivated initiatives that mine research articles from

academic networks. One of them is ArnetMiner,

a system that extracts researcher profiles from the

Web and integrates the data into a unified network

(Tang et al., 2008). A byproduct of that work is the

OAG (Open Academic Graph) collection (Sinha

et al., 2015).

To produce a big title generation dataset for our

experiments, we started from OAG. First, abstract,

4https://duc.nist.gov/duc2004/

title, and language fields were extracted from each

record where they were available. In many cases,

abstract language did not match the language field.

We ignored the latter and used a language identi-

fier to remove records that were not in English.

Duplicates were dropped and the texts were low-

ercased. Finally, Stanford CoreNLP tokenizer was

used to split title and abstract texts. The result-

ing dataset (OAGS, released with this paper) con-

tains about 35 million abstract-title pairs and can

be used for title generation experiments.

We had a quick look at the content of OAGS

and observed that most of the papers are from

medicine. There are also many papers about so-

cial sciences, psychology, economics or engineer-

ing disciplines. Given its huge size and the top-

ical richness, the value of OAGS is twofold: (i)

It can be used to supplement existing datasets on

title generation tasks when more training data are

needed. (ii) It can be used for creating byproducts

of specific scientific disciplines or domains.

5 Text Summarization Evaluation

In this section, we apply the relative metrics of

Section 2.2 and the evaluation scheme of Section 3

to benchmark several advanced methods on text

summarization of news articles and title genera-

tion of scientific papers. We first introduce the

methods and their parameters, together with the

experimental data. Later, we present and discuss

the achieved accuracy and data efficiency scores.

5.1 Tested Summarization Methods

The ability of recurrent neural networks to rep-

resent and process variable-length sequences has

created a tradition of applying them on sequence-

to-sequence tasks such as ATS or MT. In the case

of ATS, the goal is to process the source text pro-

ducing a target text that is shorter but still mean-

ingful and easy to read.

Rush et al. (2015) were probably the first to im-

plement attention in a network dedicated to ATS.

Their model (ABS in the following) uses an en-

coder that learns a soft alignment (attention) be-

tween the source and the target sequences produc-

ing the context vector. In the decoding phase, it

uses a beam-search decoder (Dahlmeier and Ng,

2012) with a window of 10 candidate words in

each target position. There are 256 and 128 di-

mensions in the hidden layer and word embedding

layer respectively. The authors reported state-of-
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the-art results in the DUC-2004 testing dataset.

See et al. (2017) proposed Pointer-Generator

(PCOV), a model that implements an attention-

based encoder for producing the context vector.

The decoder is extended with a pointing/copying

mechanism (Gulcehre et al., 2016; Gu et al., 2016)

that is used in each step to compute a generation

probability pgen from the context vector, the de-

coder states, and the decoder output in that step.

This generation probability is used as a switch

to decide if the next word should be predicted

or copied from the input. Another extension is

the coverage mechanism (keeping track of decoder

outputs) for avoiding word repetitions in the sum-

mary, a chronic problem of encoder-decoder sum-

marizers (Tu et al., 2016). The method was imple-

mented with word embeddings and hidden layer of

sizes 128 and 256 respectively.

Lin et al. (2018) tried a partial use of convo-

lutions in their model (GLOBEN) to avoid word

repetitions and semantic irrelevance in the sum-

maries. They couple the encoder with a convolu-

tional gated unit which performs global encoding

of the source context and uses it to filter certain n-

gram features and refine the output of the encoder

in each time step. GLOBEN is a very big network

(about 68M parameters on CNNDM) with three

layers in the encoder and other three in the de-

coder, each of 512 dimensions.

A taxonomy of the above (and more) sequence-

to-sequence methods and added mechanisms can

be found in Shi et al. (2018). Authors present a

detailed review of problems and proposed solu-

tions based on network structures, training strate-

gies, and generation algorithms. Furthermore,

they develop and release a library (NATS) that im-

plements combinations of mechanisms like atten-

tion, pointing, and coverage, analyzing their ef-

fects in text summarization quality. NATS was im-

plemented with the same network parameters as

PCOV. Intra-decoder attention and weight sharing

of embeddings were added in the decoder.

The introduction of the Transformer (TRANS)

architecture that removes all recurrent or convo-

lutional structures reduced computation cost and

training time (Vaswani et al., 2017). Totally based

on attention mechanism and primarily designed

for MT, Transformer can also work for text sum-

marization, since all it needs to do is to learn the

alignments between the input (source) texts and

the output (target) summaries. Positional encod-

ing is added to word embeddings to preserve the

order of the input and output sequences. TRANS

is the biggest model we tried, with four layers in

both encoder and decoder, 512 dimensions in each

layer, including the embedding layers, 200K train-

ing steps and 8000 warm-up steps.

Two observed problems in the encoder-decoder

framework are the exposure bias and train/test in-

consistency (Keneshloo et al., 2018). To overcome

them, RL ideas have been recently applied. Paulus

et al. (2017) use intra-attention to focus on differ-

ent parts of the encoded sequence. This way it

is less likely for their model (PGRL) to attend to

the same parts of input in different decoding steps,

and thus fewer word repetitions should appear in

the summaries. To optimize for ROUGE or similar

discrete evaluation metrics, they implement self-

critical policy gradient training with reward func-

tion, a RL mechanism introduced by Rennie et al.

(2017). PGRL was used with encoder and decoder

of 256 dimensions and word embeddings of 128

dimensions.

Aiming for speed, Chen and Bansal (2018) de-

veloped an extractive-abstractive text summarizer

(FASTRL) with policy-based reinforcement. It

first uses an extractor agent to pick the most salient

sentences or phrases, instead of encoding the en-

tire input sequence which can be long. It then uses

an encoder-decoder abstractor to rewrite (com-

press) the sentences in parallel. Actor-Critic pol-

icy gradient with reward function (Bahdanau et al.,

2016) joins together the extractor and abstractor

networks. Same as most models above, FASTRL

uses 256 and 128 dimensions for the recurrent

layer and the word embeddings.

In every experiment, no pretraining of word

embeddings was performed. They were learned

during the training of each model. Adam op-

timizer (Kingma and Ba, 2014) was used with

α = 0.001, β1 = 0.9, β2 = 0.999 and ǫ = 10−8.

We chose mini-batches of size 16 in most of the

cases (8 for GLOBEN and TRANS to avoid mem-

ory errors). All experiments were conducted on

two NVIDIA GTX 1080Ti GPUs.

5.2 Used Data

To cope with limited computing resources, we

used up to 1.5M records in our OAGS experi-

ments. We also picked n = 3 for the scheme of

Section 3 and created three splits of 500K, 1M

and 1.5M samples each, together with the three
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CNNDM OAGS
Authors Model P R1 R2 RL Tt P R1 R2 RL Tt

Rush et al.
ABS1 15M 26.66 8.81 24.46 135032 22M 24.75 10.05 21.84 48595

ABS2 15M 28.56 10.42 25.57 185549 22M 26.6 11.5 23.33 61729

ABS3 15M 29.64 11.55 26.32 243549 22M 27.86 12.15 24.48 73038

See et al.
PCOV1 14M 36.97 15.19 33.84 113110 21M 34.4 17.67 27.55 30551
PCOV2 14M 38.56 16.03 35.09 138175 21M 35.18 18.06 28.83 42723

PCOV3 14M 39.41 16.77 36.31 163744 21M 35.86 18.51 29.42 56538

Shi et al.
NATS1 15M 36.92 14.56 32.88 98791 – – – – –

NATS2 15M 38.25 15.89 34.02 179689 – – – – –

NATS3 15M 39.11 17.2 35.66 261794 – – – – –

Lin et al.
GLOBEN1 68M 36.53 14.9 34.11 658924 – – – – –

GLOBEN2 68M 37.82 16.13 35.46 785622 – – – – –

GLOBEN3 68M 38.67 16.94 36.25 875817 – – – – –

Vaswani et al.
TRANS1 81M 32.38 10.47 29.43 518924 129M 30.29 13.1 24.34 251802

TRANS2 81M 36.76 14.54 33.82 579149 129M 34.17 17.49 28.46 269665

TRANS3 81M 38.24 16.33 35.28 611359 129M 37.06 19.44 30.51 278602

Chen et al.
FASTRL1 – 36.95 14.89 34.69 19601 – – – – –

FASTRL2 – 39.18 16.17 36.15 30485 – – – – –

FASTRL3 – 40.02 17.52 37.24 52775 – – – – –

Paulus et al.
PGRL1 – 38.16 14.17 36.24 68942 – 35.52 16.81 28.65 43726

PGRL2 – 39.88 15.31 37.89 81529 – 36.9 18.44 30.22 55324

PGRL3 – 40.83 15.68 38.73 107179 – 38.05 19.23 31.16 74983

Table 2: Parameters, ROUGE F1 scores and training times for each method on the splits of the two datasets
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Figure 2: R1 score trends of the three models of each method on CNNDM (left) and OAGS (right)

splits (one-third, two-thirds, and full) of CNNDM.

Some statistics of the experimental data are shown

in Table 1. Vocabulary sizes used in each experi-

ment are shown in its last column.

The higher vocabulary sizes of OAGS splits

cause a significant difference in parameters be-

tween the two corresponding models of each

method. As we can see (Table 2), Transformer

models grows from 81M in CNNDM to 129M in

OAGS. Another difference between the two sets of

experiments is in the maximal number of encod-

ing and decoding steps (words in source and target

texts). For CNNDM, we used 400 and 100 respec-

tively. For OAGS, we chose 200 and 50, since pa-

per abstracts and titles should not be longer.

5.3 Summarization Results

ROUGE scores and training times (in seconds)

on CNNDM experiments are shown in the mid-

dle part of Table 2. The most accurate models

are PGRL and FASTRL. They both implement

policy-based training and optimize w.r.t ROUGE

scores. The worst performer is ABS and the other

four fall somewhere in between, reaching similar

scores with each other.

The score differences between each third model

and first one are usually small for all methods. We

believe this has to do with the way ROUGE scores
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CNNDM
Authors Models σ1 σ2 σL θ ǫ1 ǫ2 ǫL

Rush et al.
ABS12 7.13 18.27 4.54 37.41 0.19 0.45 0.12

ABS23 7.64 21.92 5.93 63.18 0.12 0.35 0.094

See et al.
PCOV12 4.3 5.53 3.69 22.16 0.194 0.25 0.167

PCOV23 4.46 9.33 7.03 37.4 0.119 0.249 0.188

Shi et al.
NATS12 3.6 9.13 3.47 81.89 0.044 0.112 0.042

NATS23 4.53 16.6 9.74 92.35 0.049 0.18 0.106

Lin et al.
GLOBEN12 3.53 8.26 3.96 19.23 0.184 0.429 0.206

GLOBEN23 4.54 10.15 4.50 23.2 0.196 0.437 0.194

Vaswani et al.
TRANS12 13.53 38.87 14.92 11.61 1.166 3.34 1.285
TRANS23 8.14 24.88 8.72 11.24 0.724 2.214 0.776

Chen et al.
FASTRL12 6.04 8.6 4.21 55.53 0.109 0.155 0.067

FASTRL23 4.33 16.87 6.09 147.78 0.029 0.114 0.041

Paulus et al.
PGRL12 4.51 8.05 4.55 18.26 0.247 0.441 0.249

PGRL23 4.81 4.88 4.48 63.58 0.076 0.077 0.07

Table 3: Data efficiency scores of the models on CNNDM experiments. σX is computed based on the correspond-

ing RX score. Similarly, ǫX is computed based on σX and θ.

OAGS
Authors Models σ1 σ2 σL θ ǫ1 ǫ2 ǫL

Rush et al.
ABS12 7.47 14.43 6.82 27.03 0.277 0.534 0.252

ABS23 9.47 11.3 9.86 36.64 0.259 0.309 0.269

See et al.
PCOV12 2.27 2.21 4.65 39.84 0.057 0.055 0.117

PCOV23 3.87 5.04 4.09 64.67 0.06 0.077 0.063

Vaswani et al.
TRANS12 12.81 33.51 16.93 7.09 1.806 4.724 2.386
TRANS23 16.92 22.3 14.41 6.63 2.552 3.364 2.173

Paulus et al.
PGRL12 3.89 9.7 5.48 26.52 0.146 0.366 0.207

PGRL23 6.23 8.57 6.22 71.07 0.088 0.121 0.088

Table 4: Data efficiency scores of the models on OAGS experiments. σX is computed based on the corresponding

RX score. Similarly, ǫX is computed based on σX and θ.

are computed. A graphical representation of the

R1 trends for each method is depicted in Figure 2

(left). R2 and RL (not shown) behave similarly.

Results on OAGS are listed on the right side of

Table 2. We could not run some of the models

on OAGS data. The extractive part of FASTRL

could not be easily adapted to perform word-level

extraction of OAGS abstracts. Furthermore, NATS

and GLOBEN ran out of memory very frequently.

From the remaining four, PGRL is again the most

accurate. TRANS follows and ABS is the weakest.

R1 score trends are shown in the Figure 2 (right).

Regarding training speed, on CNNDM we can

see that FASTRL is absolutely the best, with a con-

siderable difference from the second (PGRL). The

slowest is GLOBEN with training times at least

17x higher than those of FASTRL. In fact, it took

more than ten days to train GLOBEN on the full

CNNDM data.

OAGS training times are lower than CNNDM

ones, although OAGS data splits are 5.2 times big-

ger in number of training samples. This happens

because OAGS source and target samples are actu-

ally much shorter. We see that PCOV is the fastest

and TRANS is the slowest.

5.4 Efficiency Results

Using Equations 4, 5 and 6 of Section 2.2 we

computed the relative efficiency metrics for every

method. The values for CNNDM experiments are

shown in Table 3. We see that TRANS is clearly the

most efficient, with highest σ, lowest θ and highest

ǫ. Its scores grow quickly (despite being relatively

low) and training times grow slowly (despite being

high) in both data intervals.

PCOV and GLOBEN manifest the slowest accu-

racy score gains (lowest σ), but GLOBEN comes

second in time efficiency. NATS on the other hand,

is very time inefficient, with highest θ and lowest

ǫ. OAGS scores of Table 4 reflect a similar situa-

tion. TRANS leads and PCOV is again the worst.

The values of the other two models appear some-

where in between.

It is not easy to explain the high score and time
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efficiency of TRANS. GLOBEN is also time effi-

cient but not score efficient. Both of them are the

biggest (highest number of parameters) and deep-

est (many layers) networks we tried. The exclu-

sive feature of TRANS is the lack of any recurrent

structure. GLOBEN and the other five make use

of at least one RNN in a certain phase. It is still

hasty to infer that recurrent networks hinder score

efficiency or that more attention boosts it.

An intuitive explanation could be the fact that

in general, performance of deeper networks scales

better with more data. It could also be that high-

capacity networks are faster in interpreting large

additions of training samples (thus low θ). In fact,

using more layers and bigger training datasets is

what has driven the progress of deep learning so-

lutions in many application areas.

We plan to investigate this issue further in the

future. One step could be to run more experiments

on even bigger data sizes and smaller data inter-

vals for checking at what point do accuracy scores

keep growing. Transformer implementations with

varying number of layers and other parameter se-

tups can be further examined.

Investigating data efficiency of similar solu-

tions to tasks like QA (Question Answering, Cor-

reia et al., 2018) with standard datasets such as

SQuAD (Rajpurkar et al., 2018) could also be

valuable.

6 Conclusions

In this paper, we defined three data efficiency met-

rics for a better evaluation of data-driven learning

models. We also proposed a simple scheme for

computing and reporting them, in addition to the

basic accuracy scores. Text summarization and ti-

tle generation tasks were chosen as a case study to

see what insights the proposed scheme and met-

rics could reveal. For title generation, we also pro-

cessed a dataset of about 35 million scientific titles

and abstracts, released with this paper.

We applied seven recent ATS methods on the

two tasks. According to our results, the two meth-

ods that mix RL concepts into the encoder-decoder

framework are the fastest and the most accurate. A

surprising result is the excellent efficiency of the

popular Transformer model. As future work, we

want to perform similar studies in analogous tasks

like MT or QA. We would also like to investigate

more in depth the Transformer model.
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Abstract

Recent developments in sequence-to-sequence learning with neural networks have considerably improved the quality of automatically

generated text summaries and document keywords, stipulating the need for even bigger training corpora. Metadata of research

articles are usually easy to find online and can be used to perform research on various tasks. In this paper, we introduce two

huge datasets for text summarization (OAGSX) and keyword generation (OAGKX) research, containing 34 million and 23 mil-

lion records, respectively. The data were retrieved from the Open Academic Graph which is a network of research profiles and

publications. We carefully processed each record and also tried several extractive and abstractive methods of both tasks to create

performance baselines for other researchers. We further illustrate the performance of those methods previewing their outputs. In

the near future, we would like to apply topic modeling on the two sets to derive subsets of research articles from more specific disciplines.

Keywords: text summarization, keyword generation, corpus construction, research articles, huge corpora

1. Introduction

The ongoing tendency towards data-driven solutions for

more and more tasks such as MT (Machine Translation),

TS (Text Summarization), KG (Keyword Generation), and

other tasks related to natural languages has created incen-

tives for crawling the Web to produce large text corpora of

various types. Furthermore, recent open data initiatives of

governments1 and other institutions that encourage the pub-

lication of more data on the Web have induced the same

effect. From academia, there are initiatives such as Arnet-

Miner (Tang et al., 2008) that try to integrate existing sci-

entific data from various resources in common networks for

easier retrieval and exploitation. Among the various types

of texts published in the Web, the metadata of research arti-

cles (e.g., titles, abstracts, keywords, etc.) are probably the

easiest to find in large quantities, since they are usually not

restricted. In fact, small corpora of research articles were

used since the 90s to explore extractive KG (Witten et al.,

1999; Turney, 1999) and TS (Mani and Bloedorn, 1997;

Goldstein et al., 2000) techniques.

Research on these tasks has switched from the extractive

paradigm to the recent abstractive one that is based on

sequence-to-sequence learning with neural networks. The

respective models are usually data-hungry, emphasizing the

need for larger corpora in both TS and KG tasks. In this

paper, we first review the popular existing datasets used for

TS and KG research. We later describe the processing steps

we followed, starting from the retrieval of ArnetMiner OAG

(Open Academic Graph) data collection to the creation of

two novel and huge corpora: OAGSX2 and OAGKX.3 The

first one contains more than 34 million records consisting of

paper abstracts and titles. It is suitable for TS experiments

(more specifically for title generation which is a form of

TS). The second one contains roughly 23 million abstracts,

titles, and lists of keywords and is best suited for KG exper-

1https://www.data.gov/open-gov
2http://hdl.handle.net/11234/1-3079
3http://hdl.handle.net/11234/1-3062

iments. The data samples in the two corpora were carefully

examined and various statistics about the text lengths and

the lexical similarities between abstracts, titles, and key-

words are presented.

We also explored the performance scores (ROUGE for TS

and F1@k for KG) of existing extractive and abstractive

TS and KG solutions, trying them on evaluation minisets

derived from OAGSX and OAGKX. According to our re-

sults, the recent abstractive methods based on sequence-to-

sequence learning take a considerable time to train but per-

form better than the extractive methods on both tasks. To

the best of our knowledge, our two data collections are the

biggest of their kind that can be found online for free. We

release them under the Creative Commons By 4.0 License.

As future work, we would like to perform topic recogni-

tion on the articles of the two collections. This may lead to

the creation of many subsets of research articles data from

more specific scientific disciplines.

2. Background

2.1. Text Summarization

Automatic TS research explores intelligent methods to

compress text documents into shorter summaries that ex-

press the main ideas of the source. It is mostly driven by

our need to have shorter and easy-to-read summaries of

long documents for saving reading time. Sometimes, we

also need to have summaries of conversation threads (e.g.,

emails or chat messages). Multi-document TS is important

when we want concise information from a set of documents

and summaries of conclusions from meetings (minuting) or

other event discussions. Another type of summarization

aims to create short client reviews about different aspects

of certain products or services. Title generation is yet an-

other form of TS which is about paraphrasing the content

of a text to produce an appropriate title for it.

There are two fundamental approaches for performing TS.

The extractive way tries to select the most important and

relevant parts from the source document and combines

them to produce a shorter summary which is concise, co-
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herent and readable. In this case, the target or output text

contains verbatim copies of words or phrases taken from

the source or input. The abstractive approach, on the other

hand, learns to paraphrase the information required for the

summary, instead of directly copying it from the source.

This is somehow better, but the methodology is more com-

plex and requires more resources. The TS research of the

90s and early 00s was mostly based on extractive meth-

ods. The respective techniques used unsupervised learning

(Goldstein et al., 2000; Barzilay and Elhadad, 1997), su-

pervised learning (Wong et al., 2008; Fukumoto, 2004) or

graph methods (Erkan and Radev, 2004; Mani and Bloe-

dorn, 1997) to select the most important lexical units from

the source documents.

The abstractive approach has become popular in recent

years, following the progress in sequence-to-sequence

learning with neural networks (the encoder-decoder frame-

work). LSTM neural networks (Hochreiter and Schmid-

huber, 1997) are combined and enhanced with advanced

mechanisms like the attention of Bahdanau et al. (2015)

for a more effective learning of the alignments between the

text sequences. Attention allows the model to focus on dif-

ferent segments of the input during generation and was suc-

cessfully used by Rush et al. (2015) to summarize news ar-

ticles. The problem of unknown words (not seen in source

texts) was also mitigated by the copying technique (Gu et

al., 2016; Gulcehre et al., 2016). Furthermore, the coverage

(Tu et al., 2016a) and intra-attention (Paulus et al., 2017)

mechanisms were proposed to alleviate word repetitions in

the summaries, a notorious problem of the encoder-decoder

models.

Scoring results were pushed even further just recently by

mixing reinforcement learning concepts such as policy gra-

dient (Rennie et al., 2017) into the encoder-decoder archi-

tecture. It optimizes the learning objective (higher summa-

rization score) and still keeps an appropriate quality of the

produced summaries. A recent performance comparison of

various abstractive TS methods can be found in Çano and

Bojar (2019a).

2.2. Keyphrase Generation

Keyphrase generation is the process of analyzing a docu-

ment and producing sets of one or a few words (keywords

or keyphrases, used interchangeably) that best represent its

main concepts or topics. These keywords are frequently

utilized nowadays to annotate digital objects (e.g., research

articles, books, product descriptions, etc.) and quickly find

them in digital libraries, online stores, etc. A keyword

string is a concatenation of several keywords (commas or

semicolons are typically used as separators) attached to one

of those objects. The need to process large amounts of

documents with missing keywords created incentives for

research in automatic KG since the 90s. The popular su-

pervised learning algorithms of that time were used by au-

thors like Turney (2000) or Witten et al. (1999) in combi-

nation with lexical features to extract keywords from the

documents. Furthermore, graph-based methods (Rose et

al., 2010; Wan and Xiao, 2008) or other unsupervised KG

methods (Campos et al., 2018; Nart and Tasso, 2014) were

proposed later in the 00s.

The above extractive KG solutions were very successful be-

cause of their simplicity and execution speed. However,

extractive KG suffers from a serious inherent handicap: its

inability to produce absent keywords (keywords not ap-

pearing in the source text). Meng et al. (2017) analyzed

the author’s keywords in popular corpora. They observed

that absent and present (keywords that also appear in the

source text) keywords assigned by paper authors are almost

equally frequent. It is thus a serious drawback to com-

pletely ignore the absent keywords.

The recent advances in language representation (Mikolov

et al., 2013; Pennington et al., 2014) and sequence-to-

sequence learning (Bahdanau et al., 2015; Vaswani et al.,

2017) motivated several researchers like Meng et al. (2017)

or Zhang and Xiao (2018) to explore abstractive KG in the

context of the encoder-decoder framework. The encoder-

decoder network structures were initially utilized to per-

form MT and got quick adoption on similar tasks like TS

and KG that are also based on the sequence-to-sequence

transformation between source and target texts. Further-

more, same as in TS research, various reinforcement learn-

ing concepts like adaptive rewards that are being explored

are raising the performance scores even higher (Chan et al.,

2019). Abstractive KG is now a vibrant research direction

with more than a dozen of publications only in the last three

years. More comprehensive surveys of KG literature can

found in other recent publications like (Papagiannopoulou

and Tsoumakas, 2019) and (Çano and Bojar, 2019b).

2.3. Scientific Article Data Sources

The current hype of deep neural networks has created

strong incentives for producing data collections by crawl-

ing the web. The richest sets of language resources are used

for machine translation (Resnik and Smith, 2003; Tiede-

mann, 2012; Mahata et al., 2016; Shi et al., 2005) and

for sentiment analysis (Bosco et al., 2013; Çano and Bo-

jar, 2019c; Maas et al., 2011; Çano and Morisio, 2019;

Jiménez Zafra et al., 2015). They are mostly driven by the

information technology giants that continuously improve

their language-related applications and marketing compa-

nies to understand customers’ perceptions about various

online products.

TS and KG research of the 90s and early 00s was mostly

based on extractive methods that did not rely on big training

corpora. Things gradually changed in the late 00s with the

rising popularity of the encoder-decoder framework. The

current TS and KG methods are also highly dependent on

the big language corpora since they are mainly based on

sequence-to-sequence learning with neural networks. Some

of the most popular corpora in TS and KG literature are

presented in Table 1. One of the first big datasets was the

annotated English Gigaword (Napoles et al., 2012) used for

abstractive TS by Rush et al. (2015). It contains about nine

million news articles and headline summaries. Each head-

line was paired with the first sentence of the corresponding

article to create the training base for the experiments.

Newsroom (Grusky et al., 2018) is a very recent and het-

erogeneous bundle of about 1.3 million news articles. It

contains writings published from 1998 to 2017 by 38 ma-

jor newsrooms. Another recent dataset of news articles
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Reference Name Content # Docs

Napoles et al. (2012) Gigaword News 9 M

Grusky et al. (2018) Newsroom News 1.3 M

Nallapati et al. (2016) CNN/DM News 287 K

Hyperlink DUC-2004 News 500

Hulth (2003) Inspec Papers 2000

Krapivin et al. (2010) Krapivin Papers 2304

Kim et al. (2010) SemEval Papers 244

Meng et al. (2017) KP20k Papers 567 K

Nikolov et al. (2018) tit-gen Papers 900 K

Nikolov et al. (2018) abs-gen Papers 5 M

Table 1: Summary and keyword generation datasets

is CNN/Dailymail of Nallapati et al. (2016). It has be-

come the most popular corpus for text summarization ex-

periments. This dataset provides a rich collection of news

articles and the corresponding multi-sentence summaries

(news highlights). It is thus very suitable for training and

testing summarization models of longer texts. DUC-2004

is another dataset that was originally created for the Docu-

ment Understanding Conference.4 It has been mostly used

as an evaluation baseline, given its small size. It consists of

500 document-summary pairs curated by human experts.

Besides using news articles, it is also possible to exploit

texts of scientific articles for TS research. In fact, those

kinds of texts have been used since long ago to conduct KG

research. There are many relatively small datasets of scien-

tific publications and the corresponding keywords that have

been used for many years to test extractive or graph-based

KG methods. One of the most popular KG datasets is In-

spec released by Hulth (2003). It consists of 2000 paper

titles (1500 for training and 500 for testing), abstracts and

keywords from journals of Information Technology, pub-

lished from 1998 to 2002.

Krapivin et al. (2010) released another collection of papers

that has been frequently used in the literature. It consists

of 2304 computer science papers published by ACM from

2003 to 2005. The advantage of this dataset is the avail-

ability of the full paper texts together with the correspond-

ing metadata. A smaller dataset is SemEval of Kim et al.

(2010) that was originally created for the Semantic Evalua-

tion task. It contains 244 papers that belong to conference

and workshop proceedings.

A few years ago, Meng et al. (2017) released KP20k which

is today the most popular KG dataset. It contains 567830

Computer Science articles, 527830 used for training, 20 K

for validation and 20 K for testing. This dataset has been

used for training and comparing various recent abstractive

KG methods. Nikolov et al. (2018) raised the data sizes

even more by retrieving many scientific papers from li-

braries of biomedical research.5 The authors derived and

released two big (900 K and 5 M) corpora for TS (predict-

ing abstracts from paper bodies) and title generation (pre-

dicting titles from abstracts).

Crawling public digital libraries or websites for text re-

4https://duc.nist.gov/duc2004/
5https://www.nlm.nih.gov

Attribute Title Abstract

Total 449 M 6 B

Min / Max 3 / 25 50 / 400

Mean (Std) 13.1 (5.1) 182.2 (89.2)

Jindex 6.7 % (3.9 %)

Overlap 77 % (18 %)

Total size 34 408 509 title-abstracts

Table 2: Token statistics of OAGSX

Attribute Title Abstract Keywords

Total 290 M 4 B 270 M

Min / Max 3 / 25 50 / 400 2 / 60

Mean (Std) 12.8 (4.9) 175.1 (86.5) 11.9 (7.5)

Jindex 7.1 % (4 %) 6 % (4.8 %)

Overlap 78 % (17 %) 68 % (25 %)

Total size 22 674 436 title-abstract-keywords

Table 3: Token statistics of OAGKX

sources is an ongoing trend. ArnetMiner (Tang et al., 2008)

is an initiative to integrate scientific data (publications, re-

searcher profiles and more) from various resources in a

common and unified network. A derivative product is the

OAG data collection of scientific publications (Sinha et al.,

2015). Each record is a JSON line with publication meta-

data like authors, title, abstract, keywords, year and more.

In the following section, we describe the processing steps

we performed on OAG collection to derive OAGSX and

OAGKX datasets.

3. OAGSX and OAGKX Corpora

For producing large TS and KG text collections, we uti-

lized the text fields of the OAG bundle. From that same

article set, we filtered the records containing at least the ti-

tle and the abstract for OAGSX and those with the title,

abstract, and keywords for OAGKX. We dropped the du-

plicate entries in each of our two collections. As a result,

the samples inside each of the corpora are unique (there is

still overlapping between OAGSX and OAGKX samples,

since they were both derived from the OAG collection).

An automatic language identifier6 was used to remove the

records with abstracts not in English. We also cleared the

messy symbols and lowercased everything. Finally, Stan-

ford CoreNLP (Manning et al., 2014) was used to tokenize

the title and abstract texts.

After the preprocessing steps, we observed the size and to-

ken lengths of the records. Since there were many outliers

(e.g., records with very long or very short abstracts), we

removed all records with a title not in the range of 3-25

tokens and abstract not within 50-400 tokens. In the case

of OAGKX, we also removed samples with keyword string

not in the range of 2-60 tokens or 2-12 keywords. After

this, OAGSX was reduced to a total of about 34.4 million

records. OAGKX, on the other hand, shrank to about 22.6

million records.

6https://pypi.org/project/langid
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Attribute Value

Total 133 295 056

Min / Max 2 / 12

Mean (Std) 5.9 (3.1)

Present 52.7 % (28.3 %)

Absent 47.3 % (28.3 %)

Table 4: Keyword statistics of OAGKX

Some further statistics of the two final datasets are pre-

sented in Tables 2 and 3. In the case of OAGSX, the average

title and abstract lengths are about 13.1 and 182.2 tokens

respectively (standard deviation is always given in paren-

thesis). The corresponding values in OAGKX are 12.8 and

175.1 (slightly lower). For OAGKX we also see that the

keyphrase strings contain 11.9 tokens on average. We also

wanted to observe the lexical similarity between the titles

and abstracts. One way for this is to compute the Jaccard

similarity (Jindex in Tables 2 and 3) of the whole token sets

using the following equation:

J(A,B) =
|T ∩A|

|T ∪A|
=

|T ∩A|

|T |+ |A| − |T ∩A|
(1)

where T is the set of unique tokens in the title and A is

the set of unique tokens in the abstract. In OAGSX, the

Jaccard similarity between abstracts and titles is 6.7 %. In

OAGKX, it is 7.1 % between the abstracts and titles and

6 % between abstracts and keyword strings. Another indi-

cator is the overlap o(s, t) = |{s}∩{t}|
|{t}| which represents

the fraction of unique target tokens t (e.g., in the title or

in the keyword string excluding punctuation symbols) that

overlap with a source token (e.g., in abstract) s. The over-

laps between titles and abstracts are very similar (77 % and

78 %) in both datasets. In the case of OAGKX, the overlap

between abstracts and keyword strings is 68 %.

We further analyzed the keyword distribution in OAGKX

(Table 4). There is a total of about 133 million keywords,

with an average of 5.9 keywords per article. In abstrac-

tive KG experiments, it is also important to know the distri-

bution of present and absent keywords. The present rate

p(s, k) = |k ∩ s|
|k| is the fraction of the keywords k that

also appear in the source text s. This is similar to the

overlap, with the difference that there might be token rep-

etitions within each counted keyword. The absent rate

a(s, k) = |k|−|k ∩ s|
|k| is its complement or the fraction of

keywords k that do not appear in the source text s. From

Table 4 we see that the present and absent keywords in

OAGKX are almost evenly distributed (52.7 % and 47.3 %

each). This observation is in line with that of Meng et al.

(2017), emphasizing once again the importance of the ab-

sent keywords.

Another interesting exploration we wanted to perform was

the identification of the topics (or research domains) in each

dataset record to report the corresponding statistics. This

could lead to the creation of many subsets of OAGSX and

OAGKX with scientific articles from more specific disci-

plines (clustering together the articles from the same re-

search direction). Unfortunately, topic modeling was not

easy to perform on OAGSX and OAGKX, given the huge

size of the two corpora and our limited computational re-

sources. It thus remains a potential future work.

We still inspected a few of the samples from each dataset

manually. Their texts mostly belong to papers from

biomedical disciplines but there are also papers about psy-

chology, geology, or various technical directions. To our

best knowledge, OAGSX and OAGKX are the largest avail-

able collections of scientific paper metadata that can be

used for TS and KG experiments. Their importance is thus

twofold: (i) They can supplement existing collections if

more training samples are required. (ii) They can serve as

sources for deriving article subsets of more specific scien-

tific disciplines or domains.

4. Evaluation Experiments

We tried various extractive and abstractive methods for TS

and KG on evaluation subsets from two corpora. In the fol-

lowing sections, we report the achieved performance scores

of the automatic evaluation process. We also illustrate the

output of each method with examples.

4.1. Title Generation

For the title generation experiments, we formed three eval-

uation subsets from OAGSX: a training set of 1 million

samples, a validation set of 10 thousand samples and a test

set of 10 thousand samples. To reduce the vocabulary size

(important for abstractive text summarizers), we further re-

placed number patterns with the # symbol in each of them.

The most simple and raw baseline we used is Random-k

(Random-1 in our case) which splits the source text into

sentences and randomly picks k of them as its summary.

In our case, since we are generating the title of the arti-

cles, we randomly pick only one of the abstract sentences

as the predicted title. Random-1 can be considered as the

lowest scoring boundary since it uses no intelligence at all.

Another popular baseline is Lead-k (Lead-1 in our case).

It is based on the concept of “summary lead”, which con-

cisely explains the main idea of a text in its first sentence or

first few sentences. Lead-1 picks the first sentence from the

source text to generate its title.

LexRank is a stochastic graph-based method for assessing

the importance of textual units in a source text (Erkan and

Radev, 2004). When used to perform extractive TS, it com-

putes the importance of those units using the concept of

eigenvector centrality in the graph. The top k units (the top

sentence in this case) are returned as the best summary of

the document.

One of the abstractive text summarizers we used is Point-

Cov of See et al. (2017) which is based on the encoder-

decoder framework. In each decoding step, it implements

the pointing/copying mechanism (Gu et al., 2016; Gulcehre

et al., 2016) to compute a generation probability. The latter

is used to decide whether the next word should be predicted

or directly copied from the source sequence. Another fea-

ture is the implementation of the coverage mechanism (Tu

et al., 2016a) which helps to avoid word repetitions in the

target sequence. We trained PointCov with a hidden layer

of 256 dimensions and word embeddings of 128 dimen-

sions.
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The other abstractive summarizer we picked is the Trans-

former model that represents one of the most important

achievements in sequence-to-sequence learning of the last

years (Vaswani et al., 2017). It is totally based on the at-

tention mechanism, removing all recurrent or convolutional

structures. Although it was primarily designed for MT,

the Transformer can also work for text summarization. It

basically learns the alignments between the input (source)

texts and the output (target) summaries. As documented

by Çano and Bojar (2019a), Transformer reveals the high-

est data efficiency scores on the popular TS datasets. We

used the Transformer model with four layers in both en-

coder and decoder blocks, 512 dimensions in each layer,

including the embedding layers, 200 K training steps, and

8000 warm-up steps. Both PointCov and Transformer were

trained with Adam optimizer (Kingma and Ba, 2014) us-

ing α = 0.001, β1 = 0.9, β2 = 0.999 and ǫ = 10−8 and

mini-batches of 16 training samples. We used two NVIDIA

GTX 1080Ti GPUs at once for the training process.

Random-1, Lead-1, and LexRank (the three extractive

methods) were directly applied in the test set of 10 thou-

sand examples. For PointCov and Transformer, we used

all the three evaluation subsets. ROUGE-1, ROUGE-2, and

ROUGE-L scores (Lin, 2004) were computed by compar-

ing the title outputs of each method with the titles of the

original papers. The results are presented in Table 5.

As we expected, Random-1 is the worst in all three ROUGE

scores. Lead-1 performs well, reaching a peak score of

33.8 % in ROUGE-1. It is actually slightly better than

LexRank in all the three metrics. Transformer and Point-

Cov, which are the two abstractive neural networks we

tried, perform better than the three extractive methods.

They achieve similar results, but the Transformer leads with

a peak score of 37.27 % in ROUGE-1. It is also important to

note that the three extractive methods took only a few min-

utes to produce the outputs. PointCov and Transformer, on

the other hand, required 3 – 4 days for the training.

An abstract, its author’s title, and the titles predicted by the

above five methods are illustrated in Table 6. As we can

see, all the methods have generated titles that are longer

than those of the authors. The titles of Lead-1 and LexRank

are very similar, both based on the first sentence of the ab-

stract. The transformer has produced a very long title with

an unfinished sentence. This problem could be fixed by us-

ing a lower value for the length of the target text. PointCov

has generated a shorter sentence than the Transformer, but

it is not very coherent.

Method R1 R2 RL

Random-1 22.67 8.02 18.44

Lead-1 33.83 16.8 28.14

LexRank 29.4 12.83 24.03

PointCov 36.12 18.88 30.21

Transformer 37.27 19.12 30.78

Table 5: Results on OAGSX

Abstract: the central bank ’s lender of last resort role

was developed by a series of authors in the very late

eighteenth and through the nineteenth centuries . it

was tested in practice in a number of countries and was

found to be effective in providing monetary stability in

the face of adverse shocks . there have recently been

attempts to broaden the role to make the central bank

responsible for the stability of asset markets , or for

protecting individual banks and there have recently also

been claims that an international lender of last resort is

necessary . this article considers and rejects these pro-

posed extensions to the classic lender of last resort role

Author’s title: the lender of last resort reconsidered

Random-1 title: this article considers and rejects these

proposed extensions to the classic lender of last resort

role

Lead-1 title: the central bank ’s lender of last resort

role was developed by a series of authors in the very

late eighteenth and through the nineteenth centuries

LexRank title: the central bank ’s lender of last resort

role was developed in the late eighteenth and through

the nineteenth centuries

PointCov title: the central bank ’s lender and its impli-

cations for the stability of asset comparative analysis

Transformer title: the central bank ’s lender of last

resort role and its implications for the stability of asset

markets : a comparative analysis of the central and in

the lender of the

Table 6: KE scores on OAGKX

Method F1@5 F1@7 F1@10

TopicRank 17.12 20.81 20.75

RAKE 16.36 18.84 18.91

Maui 24.58 23.49 23.6

CopyRNN 28.15 28.93 28.96

CovRNN 27.76 29.15 29.04

Table 7: KE scores on OAGKX

4.2. Keyphrase Generation

We ran similar experiments on three evaluation sets derived

from OAGKX: a training set of 631705 samples, a valida-

tion set of 10 thousand samples and a test set of 10 thousand

samples. Once again, we tried and compared both extrac-

tive and abstractive KG methods. We used TopicRank of

Bougouin et al. (2013) which is a popular graph-based ex-

tractive method that makes use of the PageRank algorithm

(Brin and Page, 1998). It first uses clustering to group lex-

ical units of the same topic. Then, it uses the graph-based

ranking algorithm to score each topic cluster that is formed.

At the end, one keyword is picked from each of the ranked

clusters.

RAKE proposed by Rose et al. (2010) is one of the

fastest available methods for extractive KG. It first removes

punctuation symbols together with the stop words of the

specified language and then creates a graph of word co-

occurrences. Candidate words or phrases are scored based
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Abstract: a complex polysaccharide accumulation was

observed in the central nervous system ( cns ) of rats

treated with d-penicillamine similar to lafora-like bod-

ies . they have histochemical similarities comparable to

bodies described in previous studies of lafora disease

. the clinical usefulness of d-penicillamine has been

limited by many side effects including renal damage

. it is suggested that , in addition to d-penicillamine

nephropathy , there are toxic effects of this drug on the

cns

Title: polysaccharide accumulation in the central ner-

vous system of d-penicillamine treated rats

Author’s keywords: polysaccharide , central nervous

system , side effect , d-penicillamine , lafora-like bod-

ies , nephropathy

TopicRank keywords: central nervous system , d-

penicillamine , accumulation , polysaccharide accumu-

lation , cns , d-penicillamine effect , drug , lafora bodies

, clinical , rats

RAKE keywords: clinical , polysaccharide , central

nervous , rats , polysaccharide accumulation , lafora

disease , renal damage , accumulation , lafora, cns

Maui keywords: central , central system , system , d-

penicillamine , polysaccharide accumulation , polysac-

charide , accumulation , lafora-like , lafora, bodies

CopyRNN keywords: central nervous , d-

penicillamine , side effect , side , newborn rats ,

rat ileostomy , pregnant rats, nephropathy , mortality

of rats , mortality

CovRNN keywords: side effect , central nervous ,

polysaccharide , rats , lafora bodies , polysaccharide ef-

fect , d-penicillamine , polysaccharide-derived , albino

rats , trinitrobenzene sulfonic acid

Table 8: KE scores on OAGKX

on the degree and frequency of each word vertex in the

graph. The k top-scoring candidates are returned as key-

words. We also used Maui (Medelyan, 2009), a supervised

extractive method that uses lexical features and bagged de-

cision trees to predict whether a candidate phrase is a key-

word or not.

CopyRNN (Meng et al., 2017) was the first abstractive KG

method based on the encoder-decoder framework. Authors

implemented the copying mechanism to balance between

extracting present phrases from the source text with the

generation of absent phrases. This work was followed by

several recent studies that improve KG with various ad-

ditional mechanisms. Finally, the last method we tried

is CovRNN (Zhang and Xiao, 2018) which is very simi-

lar to CopyRNN. It tries to avoid the repeated keywords

during generation by considering the correlation between

the produced keywords at each generation step. This is

achieved by implementing the coverage mechanism of Tu

et al. (2016b).

We applied TopicRank and RAKE on the test set of 10 thou-

sand records. Because of its memory limitations, Maui was

trained on the first 30 thousand samples from the training

set and tested on the test set. For CopyRNN and CovRNN,

we used the full sizes of the three evaluation sets. For the

comparison, we used F1 scores of the full matches between

the author’s keywords and the top k keywords returned by

each method. Given that each data sample has a variable-

length keyword string, we picked the values 5, 7 and 10 for

the k parameter. The obtained results are shown in Table 7.

The first thing we can notice from the results is the fact

that F1@7 and F1@10 scores are very similar to each other

in each case. This is probably because few data samples

contain more than 7 keywords in their keyword string (the

average was 5.9). We also see that CopyRNN and Cov-

RNN perform significantly better than the first three extrac-

tive methods. They achieve very similar scores in the three

metrics. The peak score of 29.15 % is reached by Cov-

RNN on F1@7. From the three extractive methods, Maui

performs better than the other two. TopicRank performs

slightly better than RAKE. Once again, the training of the

abstractive methods based on neural networks took about 3

days whereas the results of the extractive approaches (with

the exception of Maui which was trained in few hours) were

obtained in few minutes.

The source texts and the produced keywords (top ten) of

a data sample are shown in Table 8. Apparently, both ex-

tractive and abstractive predictions are grammatically cor-

rect. However, few of the generations represent full key-

word matches. There is also a considerable number of par-

tial matches. The first four methods have produced cer-

tain word repetitions. We can also observe some “novel”

(thou incorrect) phrases like “mortality of rats” or “trini-

trobenzene sulfonic acid” that are produced by CopyRNN

and CovRNN.

5. Conclusion

Today, we can find uncountable research article data that

are freely available in digital libraries. Many relatively

small collections of those data are frequently used to run

text summarization and keyword generation experiments.

In this paper, we described the steps we followed to process

Open Academic Graph data and prepare two huge corpora:

OAGSX of more than 34 million abstracts and titles that

can be used for text summarization and OAGKX of about

23 million abstracts, titles, and keyword strings that can be

used for keyword generation. To our best knowledge, these

corpora of scientific paper metadata are the biggest freely

available online. We also performed several experiments

applying extractive and abstractive TS and KG methods on

their subsets to help establish performance benchmarks that

could be valuable to other researchers. In the future, we

plan to apply topic modeling on the two collections for de-

riving many subsets of research articles from more specific

scientific disciplines.
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