
This document is part of the Research and Innovation Action “European Live Translator (ELITR)”.
This project has received funding from the European Union’s Horizon 2020 Research and

Innovation Programme under Grant Agreement No 825460.

Deliverable D2.2

Report 2 on ASR Systems

Tuan-Nam Nguyen (KIT), Christian Huber (KIT)

Dissemination Level: Public

Final (Version 1.0), 31st March, 2022

Ref. Ares(2022)2423246 - 31/03/2022

European Live Translator
D2.2: Report 2 on ASR Systems

Grant agreement no. 825460
Project acronym ELITR
Project full title European Live Translator
Type of action Research and Innovation Action
Coordinator doc. RNDr. Ondřej Bojar, PhD. (CUNI)
Start date, duration 1st January, 2019, 39 months
Dissemination level Public
Contractual date of delivery 31st March, 2022
Actual date of delivery 31st March, 2022
Deliverable number D2.2
Deliverable title Report 2 on ASR Systems
Type Report
Status and version Final (Version 1.0)
Number of pages 31
Contributing partners KIT, CUNI
WP leader KIT
Author(s) Tuan-Nam Nguyen (KIT), Christian Huber (KIT)
EC project officer Luis Eduardo Martinez Lafuente
The partners in ELITR are: • Univerzita Karlova (CUNI), Czech Republic

• University of Edinburgh (UEDIN), United Kingdom
• Karlsruher Institut für Technologie (KIT), Germany
• PerVoice SPA (PV), Italy
• alfatraining Bildungszentrum GmbH (AV), Germany

Partially-participating party • Nejvyšší kontrolní úřad (SAO), Czech Republic

For copies of reports, updates on project activities and other ELITR-related information, contact:
doc. RNDr. Ondřej Bojar, PhD., ÚFAL MFF UK
Malostranské náměstí 25
118 00 Praha, Czech Republic

bojar@ufal.mff.cuni.cz
Phone: +420 951 554 276
Fax: +420 257 223 293

Copies of reports and other material can also be accessed via the project’s homepage:
http://www.elitr.eu/

© 2022, The Individual Authors
This document is licensed under a Creative Commons Attribution 4.0 licence

(CC-BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Page 2 of 31

mailto:bojar@ufal.mff.cuni.cz
http://www.elitr.eu/
http://creativecommons.org/licenses/by/4.0/

European Live Translator
D2.2: Report 2 on ASR Systems

Contents
1 Executive Summary 4

2 Types of systems investigated 5
2.1 Super-human performance speech recognition . 5
2.2 Multilingual end-to-end Sequence-to-sequence ASR 6
2.3 Domain Adaptation / New Word Adaptation . 6

3 Conclusion 6

References 6

Appendices 7

Appendix A High Performance Sequence-to-Sequence Model for Streaming Speech
Recognition from Interspeech 2020 7

Appendix B Super-Human Performance in Online Low-latency Recognition of
Conversational Speech 12

Appendix C KIT’s IWSLT 2021 Offline Speech Translation System 17

Appendix D Efficient Weight factorization for Multilingual Speech Recognition 23

Appendix E Short-Term Word-Learning in a Dynamically Changing Environ-
ment 28

Page 3 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

1 Executive Summary
In this deliverable we describe the final automatic speech recognition (ASR) systems that we
created for the ELITR speech translation system.

In Section 2 we describe our work. In the subsections 2.1 and 2.2 we address tasks T2.1
(Robustness of Acoustic Model) and T2.2 (Unsupervised / Semi-Supervised Adaptation of Lan-
guage Models), respectively. We developed an online low-latency automatic speech recognition
system with super-human performance. Furthermore, we investigated multilingual ASR sys-
tems. In subsection 2.3 we address tasks T2.2 (Unsupervised / Semi-Supervised Adaptation of
Language Models) and T2.3 (Life-Long Learning during Deployment). We started with one of
our high performance ASR systems and developed a system which is able to adapt itself with
little data to new domains and new words.

Page 4 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

2 Types of systems investigated
2.1 Super-human performance speech recognition
For many decades, researchers have worked on increasingly difficult tasks in order to achieve
superhuman capability in speech recognition. We present a system ? that achieves superhuman
performance, i.e. a WER of 5.0 % on the Switchboard conversational benchmark, with a word-
based latency of less than one second behind a speaker’s speech. The system combines attention-
based encoder-decoder networks with a novel low-latency incremental inference method.

In this work, we examined the delay that users experience while interacting with an online
speech recognition system and suggest a method for measuring it using two distinct terms:
computation latency and confidence latency. While computation latency represents the standard
real-time factor (RTF), confidence latency is the amount of time required for an online recognizer
to confidently decide its output. We demonstrate that with the support of modern computer
hardware (such as GPUs), the computation latency of S2S models is reasonably minimal (even
for large models), however the confidence latency is a more crucial criteria that we completely
address for the first time. For optimizing confidence latency, we considered online processing of
S2S models as an incremental speech recognition problem. We proposed an incremental inference
approach with two stability detection methods to convert an S2S model to be used in online
speech recognition and to allow to trade-off between latency and accuracy. Our experimental
results show that it is possible to use a popular Long Short-Term Memory (LSTM) or self-
attention based S2S ASR model for streaming speech recognition

without any model modification. With a delay of 1.8 seconds in all output elements, all the
experimental models retain their state-of-the-art performance when performing offline inference.
On the Switchboard benchmark, our best online system, which effectively utilizes three S2S
models in a low-latency way, achieves a word-error-rate (WER) of 5.0 %. This online accuracy
is, to the best of our knowledge, on par with state-of-the-art offline performance. We also
show that human performance may be achieved while delivering output with extremely low
latency. An incremental inference and a stability detection are two important components of
our approach.

Incremental Inference: The incremental inference component waits for a chunk of acoustic
frames to arrive with a predetermined duration before sending them to the inference
component. The inference component needs to accumulate all the chunks received so far
and extend the current stable hypothesis to produce a set of new unstable hypotheses.
This unstable set is then sent to the stability detection component, which uses it to find
a longer stable hypothesis. Because the detection of stability is handled individually, we
may use different models for inference to increase identification accuracy. S2S models
with various architectures or language models trained on various text sources might be
involved. Using the ensemble approach, all of these models could be evenly combined.

Stability Detection: We investigate a combination of two stability detection conditions for
incremental S2S speech recognition: shared prefix in all hypotheses and best-ranked prefix
with reliable endpoint. First condition happens when all the active hypotheses in the
beam-search share the same prefix. In the second condition, we follow the approach in ?
for the estimation of a prefix endpoint. After that, we can cut out the part of audio with
a stable hypothesis, consider the remain part of audio as input to be to fed to our model.

We also participated with this system (see at ?) in the Offline Speech Translation Task
for IWSLT 2021. The ensemble of LSTM-based and Conformer-based sequence-to-sequence
model provider the best results, which are 2.4 and 3.9 WERs for Libri and TED-LIUM test sets
respectively.

Page 5 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

2.2 Multilingual end-to-end Sequence-to-sequence ASR
Since our speech recognition system reached a super-human performance in English, we ex-
panded our model to include a variety of languages. End-to-end multilingual speech recognition
entails training a single model on a compositional speech corpus including several languages,
culminating in a single neural network capable of transcribing multiple languages. It is feasible
to use a single neural network to capture common characteristics across various datasets of
different languages. This strategy has been widely utilized to assist under-resourced languages
in gaining knowledge from their richer counterparts.

Because each language in the training data has its own characteristics, the shared network
may struggle to optimize for all of them at the same time. We present a novel multilingual
architecture that focuses on the core operation in neural networks: linear transformation func-
tions. We propose a multilingual architecture that utilizes a factorization approach that is
both efficient and scalable with the number of languages involved ?. Furthermore, as long
as matrix-vector multiplication is the dominant operation, this approach may be used to any
neural design. The method’s main concept is to assign fast weight matrices for each language
by decomposing each weight matrix apart into a shared component and a language-dependent
component. The latter is then factorized into vectors using rank-1 assumptions to reduce the
amount of parameters per language, allowing us to use the original low-latency network’s op-
timized implementation, which reduces our approach’s the computational cost. This approach
has been tested on two widely used architectures: Long Short-Term Memories (LSTM) and
Transformers which indicate that weight factorization can help both types of networks in mul-
tilingual ASR. In two multilingual settings with 7 and 27 languages, this efficient factorization
approach reduced word error rates by 26% and 27%, respectively.

2.3 Domain Adaptation / New Word Adaptation
As described above, neural sequence-to-sequence systems deliver state-of-the-art performance
for automatic speech recognition (ASR). When using appropriate modeling units, e.g., byte-pair
encoded characters, these systems are in principle open vocabulary systems. In practice, how-
ever, they often fail to recognize words not seen during training, e.g., named entities, numbers
or technical terms.

To alleviate this problem, ? proposed to supplement an end-to-end ASR system with a
word/phrase memory and a mechanism to access this memory to recognize the words and
phrases correctly. After the training of the ASR system, and when it has already been deployed,
a relevant word can be added or subtracted instantly without the need for further training. They
demonstrated that through this mechanism the system is able to recognize more than 85% of
newly added words that it previously failed to recognize compared to a strong baseline.

Within the ELITR project, we extended this system and extensively evaluated it in a dy-
namically changing environment. The results (see appendix E) are submitted to Interspeech
2022.

3 Conclusion
This deliverable described the final state of the ASR systems developed for the ELITR project.
We developed online low-latency automatic speech recognition system with super-human perfor-
mance, through incremental inference and stability detection, multilingual end-to-end sequence-
to-sequence ASR models, using weight factorization, and a method to add new words instantly
the such end-to-end sequence-to-sequence ASR models.

Page 6 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

A High Performance Sequence-to-Sequence Model for Streaming
Speech Recognition from Interspeech 2020

High Performance Sequence-to-Sequence Model for
Streaming Speech Recognition

Thai-Son Nguyen, Ngoc-Quan Pham, Sebastian Stüker, Alex Waibel

Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology
thai.nguyen@kit.edu

Abstract
Recently sequence-to-sequence models have started to achieve
state-of-the-art performance on standard speech recognition
tasks when processing audio data in batch mode, i.e., the com-
plete audio data is available when starting processing. However,
when it comes to performing run-on recognition on an input
stream of audio data while producing recognition results in real-
time and with low word-based latency, these models face sev-
eral challenges. For many techniques, the whole audio sequence
to be decoded needs to be available at the start of the process-
ing, e.g., for the attention mechanism or the bidirectional LSTM
(BLSTM). In this paper, we propose several techniques to mit-
igate these problems. We introduce an additional loss function
controlling the uncertainty of the attention mechanism, a modi-
fied beam search identifying partial, stable hypotheses, ways of
working with BLSTM in the encoder, and the use of chunked
BLSTM. Our experiments show that with the right combina-
tion of these techniques, it is possible to perform run-on speech
recognition with low word-based latency without sacrificing in
word error rate performance.
Index Terms: sequence-to-sequence, online, streaming

1. Introduction
Sequence-to-sequence (S2S) attention-based models [1, 2] have
become increasingly popular for end-to-end speech recognition.
Several advances [3, 4, 5, 6] have been proposed to the archi-
tecture and the optimization of S2S models to achieve superior
recognition performance. In offline scenarios, i.e., batch pro-
cessing of audio files, the S2S models in [7, 8] have already
shown state-of-the-art performance on standard benchmarks.
However, methods for employing S2S models in online speech
recognition, i.e., run-on recognition with low latency, still needs
to be researched, to obtain the desired accuracy and latency.

[9, 10, 11] pointed out early that the shortcoming of an
attention-based S2S model used in online condition lies in its
attention mechanism, which must perform a pass over the en-
tire input sequence for every element of the output sequence.
[10, 11] proposed a so-called monotonic attention mechanism
that enforces a monotonic alignment between the input and out-
put sequence. Later on, [12, 13, 14] have addressed the la-
tency issue of bidirectional encoders, which is also an obsta-
cle for online speech recognition. In these studies, unidirec-
tional and chunk-based encoder architectures replace the fully-
bidirectional approach to control the latency.

In this work, we analyze the alignment behavior of the at-
tention function of a high-performance S2S model and propose
an additional constraint loss to make it capable of streaming in-
ference. By discussing the problems that occurred when adapt-
ing a S2S model to be used for a streaming recognizer, we ad-
ditionally show that the standard beam-search has no guarantee
for low-latency inference results, and needs to be modified for

providing partial hypotheses. Besides, we argue that the com-
mon real-time factor is not a proper choice for measuring the
user-perceived latency in online and streaming setup, and pro-
pose a novel and suitable technique for the replacement.

In contrast to the earlier works in the literature, our ex-
perimental results proved that a bidirectional encoder could be
combined with suitable inference methods to produce high ac-
curacy and low latency speech recognition output. With a delay
of 1.5 seconds in all output elements, our streaming recognizer
can achieve the ideal performance of an offline system with the
same configuration. To the best of our knowledge for the first
time, a S2S speech recognition model can be used in online
conditions without scarifying accuracy 1.

2. Sequence-to-Sequence Model
In this work, we modify the LSTM-based sequence-to-sequence
encoder-decoder model proposed in [8] to perform high-
accuracy online streaming ASR with very low latency. Our
model can be decomposed using a set of neural network func-
tions as follows:

enc = LSTM(CNN(spectrogram))

emb = LSTM(Embedding(subwords))

ctx, attn = SoftAttention(emb, enc, enc)

y = Distribution(ctx+ emb)

In principle, the functions are designed to map a sequence
of acoustic features into a sequence of sub-words and can be
grouped into two parts: encoder and decoder. In the encoder,
acoustic vectors are down-sampled with two convolutional lay-
ers and then fed into several bidirectional LSTM layers to gen-
erate the encoder’s hidden states enc. In the decoder, two unidi-
rectional LSTM layers are used to embed a sub-word unit into a
latent representation emb. The multi-head soft-attention func-
tion proposed in [15] is used to model the relationship between
enc and emb, which results in a context vector ctx. All the
functions are jointly trained via the sequence cross-entropy loss
by plugging a softmax distribution on top of ctx and emb.

As shown in [8], this S2S model can achieve highly-
competitive offline performance on the Switchboard speech
recognition task. However, the model encounters latency issues
when being used in online conditions since both, the attention
function and the bidirectional encoder network, require the en-
tire input sequence to achieve their optimal performance.

3. Streaming S2S ASR
In this section, we describe our modifications that enable the
S2S model to perform online streaming speech recognition with

1The project ELITR leading to this publication has received fund-
ing from the European Unions Horizon 2020 Research and Innovation
Programme under grant agreement No 825460.

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-18632147

Page 7 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

low latency and without loss in performance. The modifications
include an additional loss to control the uncertainty of the at-
tention function and search algorithms to infer high-accuracy
partial hypothesis.

3.1. Discouraging Look-ahead Attention

The core of S2S models is the mechanism that autoregessively
generates a context vector ctx for the prediction of the next to-
ken. For the model described in Section 2, ctx is computed as
a sum of all the encoder’s hidden states weighted by the at-
tention scores which are calculated by the attention function.
The attention scores calculated for a specific token typically re-
veals the positions within the encoder states (or spectral frames)
corresponding to the token. So, the attention function can be
considered as an alignment model. However, this unsupervised
alignment does not resemble traditional forced-alignments (or
human alignments) in speech recognition. As illustrated in Fig-
ure 1a, during a particular inference process, the attention scores
produced for many tokens (e.g., #3, 8, 9, 16) are dominated by
the start and end frames, which are not the proper alignments. In
this case, the inference still produces the correct transcript, and
so the attention function works as it is expected. The mismatch
between the attention-based alignment and regular alignment
reveals uncertainty that the attention function may have while
being optimized with the sequence training likelihood. Al-
though this uncertainty may not lead to inference errors, the at-
tention function always employs all the encoder’s hidden states,
which hinders the model from being used in streaming infer-
ence. It is preferable for a streaming inference that for the pre-
diction of a token S, the attention function only considers past
frames until a particular time St (the endpoint) and disregards
all future frames.

To build such a S2S model for streaming, we investigated
the incorporation of an additional loss which discourages the
attention function from using future frames during training.
Specifically, given token S which belongs to word W in label
sequenceL, we find a regionRs = (Wt,∞) in whichWt is the
end time of W provided by a Viterbi alignment. The attention-
based constraint loss is computed as the sum of all attention
scores within the region Rs for all S in L:

Lattn = α
∑
S

|Rs|∑
x

AscorexS

The tuneable parameter α adjusts the influence of the constraint
loss to the maximum likelihood loss of the label sequence dur-
ing training. By minimizing both losses simultaneously, we ex-
pect that the attention function learns to produce close-to-zero
scores for the constraint regions for all label tokens while still
minimizing the main loss.

3.2. Inference for Partial Stable Hypothesis

Beam search is the most efficient approach for the inference
of S2S models. Its basic idea is to maintain a search network
in which network paths are extended with new nodes with the
highest accumulated scores and then pruned away to keep only
a set of active paths (or hypotheses). Typically, the most proba-
ble hypothesis for an utteranceX is found and guaranteed when
the search space constructed from the entire acoustic signals of
X is supplied to the search. However, waiting for the complete
acoustic signals of X to output inference results is not efficient
for a streaming setup. A streaming recognizer must be able to
produce partial output while processing partial input. In this

Figure 1: Attention-based alignments provided by a) the regular
attention function and b) c) the attention function trained with
the constraint loss during the inference of an utterance of 4-
seconds length (down-sampling of 4 frames after encoder’s lay-
ers). The alignments for the tokens 3, 8, 9, 16 are dominated by
both start and end frames in a), and dominated by start frames
only in b).

section, we describe our search algorithm applied to the pro-
posed S2S model to produce partial output while retaining high
accuracy.

Assume that in a streaming setup, at time t we use the
proposed S2S model to perform inference for t audio frames.
Given a context sequence C, the attention function is used to
generate t attention scores for the prediction of the next token.
We find a time tc <= t such that the sum of all attention scores
from the covering window w = [0, tc] is equal to a constant
θ =

∑|tc|
x Ascorex. When θ = 0.95, w covers all dominant

attention scores and the context vector generated from w is al-
most the same as from [0, t]. If tc is observed to be unchanged
when t keeps growing, then we consider tc as the endpoint of
C. During stream processing, we use a term ∆ to determine if
endpoint tc finally gets fixed as tc < t−∆.

We then incorporate the information of endpoints into the
beam search to find a partial stable hypothesis. Assume that
our beam search can always perform in real-time for t audio
frames to produce N considered hypotheses. If all N hypothe-
ses share the same prefix sequence C and the endpoint of C is
determined, then we consider C to be an immortal part that will
not change anymore in the future. When more audio frames are
available in the stream, C will be used as the prefix for all search
hypotheses, and we repeat this step to find a longer stable hy-
pothesis. Except the condition on endpoints, the idea of finding
immortal prefix is similar to the partial trace-back [16, 17] used
in HMM-based speech recognizers.

In addition to the immortal prefix, we also investigated a
more straightforward method in which we only consider the
best-ranked hypothesis and decide on a stable part C based
solely on the term ∆. The inspiration comes from the incre-
mental speech recognition approach proposed in [18].

3.3. Bidirectional Encoder

To achieve high performance, bidirectional LSTM have been
the optimal choice for the encoder of LSTM-based S2S models.
However, due to the backward LSTM, bidirectional LSTM are
not suited to provide partial and low-latency output as needed
for streaming recognizers. The addition of acoustic input will
affect all of the encoder’s hidden states, which then makes all

2148

Page 8 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Table 1: WER performance of the S2S model with bidirectional
encoder trained with different scales of the constraint loss.

Model α SWB CH Hub5’00

6x1024 BLSTM

5.9 11.8 8.9
0.4 6.2 12.2 9.2
0.2 6.1 12.1 9.1
0.05 5.8 12.0 8.9

partial inference results unstable. This effect leads to the fact
that stable output can be confidently inferred only when the in-
put is complete. Therefore, earlier works [10, 19, 20] switched
to unidirectional LSTM in their online models.

In this work, we try to utilize bidirectional LSTM for high-
performance speech recognition in a streaming scenario. In the
first setting, we investigated the use of the S2S model with a
fully bidirectional encoder. First, we train the S2S model to
achieve optimal parameters for the offline setup, and with the
attention-based constraint loss proposed in Section 3.1. Then,
during inference, we update the encoder’s hidden states from
all available acoustic input before performing the search ap-
proaches in Section 3.2 to find stable hypotheses. As will be
shown later, the use of a bidirectional LSTM as this way is pos-
sible since the proposed inference methods rely on the determi-
nation of endpoints, and the update of encoder’s hidden states
leads to stabilizing this determination.

In addition to fully bidirectional LSTM, we also experi-
mented with a chunk-based BLSTM approach. During training,
we divide input sequences into many non-overlapping blocks of
a fixed size ofK, and then use a BLSTM to compute each block
sequentially. To benefit from long-range contextual learning,
we initialize the forward LSTM with its last hidden states after
processing the previous chunk. The initialization of the back-
ward LSTM can either be a constant or from the previous chunk.
By doing so, the encoder’s hidden states can be computed in-
crementally and efficiently as for unidirectional LSTM. This
chunk-based approach is different from [21] and the latency-
controlled BLSTM [22, 23] that adopt constant initialization of
both directions.

4. Experiments
4.1. Experimental Setup

Our experiments were conducted on the Fisher+Switchboard
corpus consisting of 2,000 hours of telephone conversation
speech. The Hub5’00 evaluation data was used as the test set.
All the experimental models use the same input features of 40
dimensional log-mel filterbanks to predict 4,000 BPE sub-word
units generated with the SentencePiece [24] toolkit from all the
training transcripts. The models with bidirectional encoder em-
ploy six layers of 1024 units while it is 1536 for the unidirec-
tional encoders. We used only 1-head for the attention function
in all setups. All models were trained with a dropout of 0.3. We
further used the combination of two data augmentation methods
Dynamic Time Stretching and SpecAugment proposed in [8] to
reduce model overfitting. We use Adam [25] with an adaptive
learning rate schedule to perform 12,000 updates during train-
ing. The model parameters of the 5 best epochs according to
the perplexity on the cross-validation set are averaged to pro-
duce the final model.

For beam search, we use neither length normalization nor
any language model. With a beam size of 8, the experimental
models typically achieve their optimal accuracy.

Table 2: Latency and accuracy of the S2S model with bidirec-
tional encoder on Hub5’00 test set.

Method Beam Size ∆ WER Latency

Force-Alignment
8 8.9 0.60
4 9.1 0.60
2 9.3 0.60

Immortal Prefix

8 20 8.9 0.93
8 30 8.9 0.93
4 20 9.2 0.86
4 30 9.1 0.87
2 20 12.6 0.74
2 40 10.1 0.79
2 60 9.5 0.83
2 80 9.3 0.86

1st-Ranked Prefix

8 30 11.2 0.75
8 50 9.6 0.80
8 70 9.3 0.84
4 30 11.3 0.75
4 50 9.6 0.80
4 70 9.3 0.84
2 10 25.8 0.62
2 30 11.4 0.75
2 50 9.7 0.80
2 70 9.3 0.84

Combination
8 20-70 9.2 0.83
4 30-70 9.4 0.81
2 60-70 9.5 0.83

4.2. Latency Measure

Neither the commonly used real-time factor (RTF) nor commit-
ment latency [26, 27] are sufficient to measure user-perceived
latency for a streaming recognizer. For example, the transcript
outputs for an 11-seconds sentence can appear 10 seconds later
than a 1-second sentence, but the RTFs measured in two cases
can be similar. In this study, we propose to use a different
method for measuring streaming latency. Assume that a rec-
ognizer processes a sentence S of T seconds in streaming fash-
ion and it outputs N token s1, s2,.. sn at different timestamps
t1, t2,.. tn. And assume the inference time is always a small
constant, then timestamp ti is just when the recognizer is confi-
dent of producing si. The latency of recognizing S with regard
to the transcript s1, s2,.. sn is calculated as the average of all
token latencies ti ∈ [1, n] normalized by the duration of S:∑
ti/(n ∗ T). With this measure, the latency of an offline sys-

tem is always 1 – as the offline system is only confident for all
transcripts until end-of-sentence. In the same way, we simulate
the latency of an instant recognizer by using a forced-alignment
to find ti for si.

5. Results
5.1. Effect of the Constraint Loss

In this section, we evaluate the influence of the constraint loss
proposed in Section 3.1 on the training of the S2S model. We
started by using a high value for α and exponentially decreased
it to train several systems for comparison. As observed during
training, the constraint loss gets small quickly to a stable value
depended on α. Joint training slows down the convergence of
the main loss but does not have a significant impact on the final
performance. As shown in Table 1, WERs are slightly worse
with high α and can be similar to the regular training when α is

2149

Page 9 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

small (e.g., 0.05). Different from that, the constraint loss may
largely change the behavior of the attention function. For exam-
ple, in Figure 1b, the attention function moves the high scores of
the mismatched alignment to start frames, instead of end frames
as in the regular training. We also found an extreme case when
α = 0.4. The attention-based alignment does not correspond at
all to the proper alignment as illustrated Figure 1c.

Using the model trained with α = 0.05, we follow the ap-
proach in Section 3.2 to extract the endpoints for all prefixes
found during the inference of the evaluation set. We could ver-
ify that the extracted endpoints in all sentences match the ex-
pectation for streaming inference described in Section 3.1. So
we keep this model for further experiments.

5.2. Latency on Various Conditions

Using the S2S model with a bidirectional encoder trained with
the constraint loss scale α = 0.05, we performed several exper-
iments with the inference approaches described in Section 3.2.
In the experiments, the streaming scenario is simulated by re-
peatedly feeding an additional audio chunk of 250 ms to the
experimental systems for incremental inferences. All the in-
ferences were performed on a single Nvidia Titan RTX GPU,
which produced an average RTF of 0.065 with a beam size of
8. The RTF result shows that real-time capacity is not a bottle-
neck problem in this setup. So we focus on the latency measure
proposed in Section 4.2.

For baselines, we computed the offline WER performance
with beam sizes 8, 4, 2, and then used a force-alignment system
to produce the ideal latency from the offline transcripts. The
ideal latency is always 0.6. If we shift the time alignment of
the transcripts with 250 ms (i.e., all the outputs have a delay of
250 ms), 500 ms, 1 second, and 1.5 seconds, then we obtained
a latency of 0.71, 0.78, 0.86 and 0.91 respectively.

Table 2 presents the accuracy and the latency we achieved
when using the immortal prefix and 1st-ranked prefix inference
methods with several settings of ∆. Overall, the two methods
are consistent with the observations in the HMM-based systems
[16, 17, 18]. Using the immortal prefix condition, the final ac-
curacy can be guaranteed as for the offline inference for large
beam sizes, e.g., 8 and 4. For a smaller beam size, this condition
is not strong enough to deal with unstable partial results – prob-
ably due to the changes of the encoder’s hidden states. In the
1st-ranked prefix approach, increasing ∆ allows for a flexible
trade-off between the accuracy and the latency. The offline ac-
curacy can also be achieved if a very large ∆ is applied. These
results consolidate our findings in two aspects. First, the inte-
gration of ∆ is reliable and crucial for the streaming inferences
to work efficiently. And second, the use of the bidirectional
LSTM for the encoder is possible and results in high accuracy.

To achieve 8.9% WER (the offline accuracy), the system
needs to delay outputs with an average duration of about 1.5
seconds. To obtain a lower latency of 1 second, the WER in-
creases to 9.2%, e.g., by using the immortal prefix method with
∆ = 20 and beamsize = 4. The combination of both methods
is efficient if we want to reach a latency of 0.81, which is closer
to the average delay of 0.5 seconds.

5.3. Performance of Different Encoders

The bidirectional requires additional re-computation of the en-
tire encoder’s hidden states for every addition of input signal
in the stream. In this section, we investigate two additional
network architectures, unidirectional LSTM and chunk-based
BLSTM described in Section 3.3, that improve the computa-

Table 3: Latency and accuracy of the S2S models with unidirec-
tional and chunk-based encoders using immortal prefix.

Encoder Beam Size ∆ WER Latency

Unidirectional

8 30 12.7 0.94
8 ∞ 12.6 1.00
2 20 13.6 0.82
2 30 13.2 0.85
2 ∞ 13.1 1.00

Chunk-based K=80

8 30 10.5 0.91
8 ∞ 10.4 1.00
2 20 11.1 0.80
2 30 10.9 0.82
2 ∞ 10.8 1.00

Chunk-based K=200

8 30 10.3 0.89
8 ∞ 10.0 1.00
2 30 11.3 0.79
2 60 10.8 0.85
2 ∞ 10.7 1.00

tional efficiency of the encoder. For chunk-based, we experi-
mented with K = 80 and K = 200, as the chunk sizes of
800 ms and 2 seconds. We constantly found that initializing
the backward LSTM from the last hidden states of the previous
chunk is better than a constant, so we only present the results
of this approach. We evaluated two types of encoders in two
categories: the best accuracy and the accuracy that the systems
retain when maintaining an average delay of 1 second. To do
so, we use the same immortal prefix inference and experiment
with different settings of beam size and ∆.

As shown in Table 3, there is a big gap between the best
WER of the unidirectional and bidirectional encoders (12.6%
vs. 8.9%). The chunk-based encoder, however, is closer to the
performance of the bidirectional one when a large chunk size
is used. As the encoder’s states are fixed early, the inferences
are already stable when ∆ = 30 for all beam sizes. To achieve
1-second delay, all the approaches need to trade-off for an accu-
racy reduction of 5% relatively. In term of latency, the chunk-
based approach with K = 80 and beamsize = 2 and ∆ = 30
is the best setting in this setup.

6. Related work
[10, 11] pointed out the problems of the soft-attention mech-
anism on acquiring the entire encoder’s states and proposed
a trainable monotonic attention function to train sequence-to-
sequence models for online application. Given a prefix, the
monotonic attention function allows finding an encoder position
[10] or the endpoint of a chunk [11] used for prediction of the
next token. In our study, we showed that endpoints can also be
estimated precisely and efficiently via the regular soft-attention
function by controlling its uncertainty. We further showed that
there are more issues to be addressed for high-performance on-
line speech recognition, such as finalizing partial results of the
beam search and the use of a bidirectional encoder, and pro-
posed effective methods for addressing theses issues.

7. Conclusion
We have proposed and evaluated several techniques for apply-
ing S2S attention-based models to streaming speech recogni-
tion. Our results show that with these techniques it is possible
to produce low latency online recognition results on the Switch-
board task without a significant decrease in performance.

2150

Page 10 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

8. References
[1] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-

gio, “Attention-based models for speech recognition,” in Ad-
vances in neural information processing systems, 2015.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4960–4964.

[3] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in ICASSP 2018.

[4] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training of
end-to-end attention models for speech recognition,” Proc. Inter-
speech 2018.

[5] C. Weng, J. Cui, G. Wang, J. Wang, C. Yu, D. Su, and D. Yu, “Im-
proving attention based sequence-to-sequence models for end-to-
end english conversational speech recognition,” Proc. Interspeech
2018.

[6] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Muller, and A. Waibel,
“Very deep self-attention networks for end-to-end speech recog-
nition,” Proc. of Interspeech 2019.

[7] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” Proc. of Interspeech 2019.

[8] T.-S. Nguyen, S. Stueker, J. Niehues, and A. Waibel, “Improving
sequence-to-sequence speech recognition training with on-the-fly
data augmentation,” arXiv preprint arXiv:1910.13296, 2019.

[9] N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo, and
S. Bengio, “An online sequence-to-sequence model using partial
conditioning,” in Advances in Neural Information Processing Sys-
tems, 2016, pp. 5067–5075.

[10] C. Raffel, M.-T. Luong, P. J. Liu, R. J. Weiss, and D. Eck, “Online
and linear-time attention by enforcing monotonic alignments,” in
Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017, pp. 2837–2846.

[11] C.-C. Chiu and C. Raffel, “Monotonic chunkwise attention,”
arXiv preprint arXiv:1712.05382, 2017.

[12] R. Fan, P. Zhou, W. Chen, J. Jia, and G. Liu, “An online attention-
based model for speech recognition,” Proc. Interspeech 2019, pp.
4390–4394, 2019.

[13] H. Miao, G. Cheng, P. Zhang, T. Li, and Y. Yan, “Online hy-
brid ctc/attention architecture for end-to-end speech recognition,”
Proc. of Interspeech 2019, pp. 2623–2627, 2019.

[14] E. Tsunoo, Y. Kashiwagi, T. Kumakura, and S. Watanabe, “To-
wards online end-to-end transformer automatic speech recogni-
tion,” 2019.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017.

[16] P. Brown, J. Spohrer, P. Hochschild, and J. Baker, “Partial trace-
back and dynamic programming,” in ICASSP’82. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
vol. 7. IEEE, 1982, pp. 1629–1632.

[17] E. O. Selfridge, I. Arizmendi, P. A. Heeman, and J. D. Williams,
“Stability and accuracy in incremental speech recognition,” in
Proceedings of the SIGDIAL 2011 Conference. Association for
Computational Linguistics, 2011, pp. 110–119.

[18] S. Wachsmuth, G. A. Fink, and G. Sagerer, “Integration of pars-
ing and incremental speech recognition,” in 9th European Signal
Processing Conference (EUSIPCO 1998). IEEE, 1998, pp. 1–4.

[19] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang et al., “Stream-
ing end-to-end speech recognition for mobile devices,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 6381–6385.

[20] A. Narayanan, R. Prabhavalkar, C.-C. Chiu, D. Rybach, T. N.
Sainath, and T. Strohman, “Recognizing long-form speech using
streaming end-to-end models,” arXiv preprint arXiv:1910.11455,
2019.

[21] K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury, and M. Picheny,
“Forget a bit to learn better: Soft forgetting for ctc-based au-
tomatic speech recognition,” Proc. Interspeech 2019, pp. 2618–
2622, 2019.

[22] R. Fan, P. Zhou, W. Chen, J. Jia, and G. Liu, “An online attention-
based model for speech recognition,” Proc. Interspeech 2019,
2019.

[23] S. Xue and Z. Yan, “Improving latency-controlled blstm acous-
tic models for online speech recognition,” in 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 5340–5344.

[24] T. Kudo and J. Richardson, “Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” arXiv preprint arXiv:1808.06226, 2018.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[26] T. S. Nguyen, J. Niehues, E. Cho, T.-L. Ha, K. Kilgour, M. Muller,
M. Sperber, S. Stueker, and A. Waibel, “Low latency asr for simul-
taneous speech translation,” 2020.

[27] B. Li, S.-y. Chang, T. N. Sainath, R. Pang, Y. He, T. Strohman, and
Y. Wu, “Towards fast and accurate streaming end-to-end asr,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6069–
6073.

2151

Page 11 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

B Super-Human Performance in Online Low-latency Recognition of
Conversational Speech

Super-Human Performance in Online Low-latency Recognition of
Conversational Speech

Thai-Son Nguyen12, Sebastian Stüker12, Alex Waibel12

1 Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology
2 Karlsruhe Information Technology Solutions — kites GmbH

firstname.lastname@kit.edu

Abstract
Achieving super-human performance in recognizing human
speech has been a goal for several decades as researchers have
worked on increasingly challenging tasks. In the 1990’s it was
discovered, that conversational speech between two humans
turns out to be considerably more difficult than read speech
as hesitations, disfluencies, false starts and sloppy articulation
complicate acoustic processing and require robust joint han-
dling of acoustic, lexical and language context. Early attempts
with statistical models could only reach word error rates (WER)
of over 50% which is far from human performance with shows
a WER of around 5.5%. Neural hybrid models and recent
attention-based encoder-decoder models have considerably im-
proved performance as such contexts can now be learned in an
integral fashion. However, processing such contexts requires an
entire utterance presentation and thus introduces unwanted de-
lays before a recognition result can be output. In this paper, we
address performance as well as latency. We present results for a
system that can achieve super-human performance, i.e. a WER
of 5.0% on the Switchboard conversational benchmark, at a
word based latency of only 1 second behind a speaker’s speech.
The system uses multiple attention-based encoder-decoder net-
works integrated within a novel low latency incremental infer-
ence approach.
Index Terms: ASR, Sequence-to-sequence, Online, Streaming,
Low Latency, Human Performance

1. Introduction
Sequence-to-sequence (S2S) attention-based models [1, 2] are
a currently one of the best performing approaches to end-to-
end automatic speech recognition (ASR). A lot of research has
already been dedicated to boost the performance of S2S mod-
els. Several works [3, 4, 5, 6, 7] have successfully pushed
up the state-of-the-art performance records on different speech
recognition benchmarks and proved the superior performance
of S2S models over conventional speech recognition models in
an offline setting. As so, the next research trend is to apply
S2S speech recognition in practice. Many practical applications
need to work ASR systems in real-time run-on mode with low-
latency [8, 9].

Early studies [10, 11, 12] pointed out that the disadvantage
of an S2S model used in online condition lies in its attention
mechanism, which must perform a pass over the entire input
sequence for every output element. [11, 12] have dealt with
this disadvantage by proposing a so-called monotonic attention
mechanism that enforces a monotonic alignment between the
input and output sequence. Later on, [13, 14, 15] have addi-
tionally resolved the latency issue of bidirectional encoders by

using efficient chunk-based architectures. More recent works
[16, 17, 18, 19, 20, 21] have addressed these latency issues for
different S2S architectures.

While most of the studies focus on model modifications to
make S2S models capable of online processing with minimal
accuracy reduction, they lack thoughtful research on the latency
aspect. In this work, we analyze the latency that the users suf-
fer while interacting with an online speech recognition system,
and propose to measure it with two separate terms computation
latency and confidence latency. While computation latency re-
flects the common real-time factor (RTF), confidence latency
corresponds to the time an online recognizer needs to confi-
dently decide its output. We show that with the support of new
computing hardware (such as GPUs), the computation latency
of S2S models is relatively small (even for big models), and the
confidence latency is a more critical criterion which, for the first
time, we address thoroughly.

To optimize for confidence latency, we consider the online
processing of S2S models as an incremental speech recogni-
tion problem. We propose an incremental inference approach
with two stability detection methods to convert an S2S model
to be used in online speech recognition and to allow to trade-off
between latency and accuracy. Our experimental results show
that it is possible to use a popular Long Short-Term Memory
(LSTM) [22] or self-attention based S2S ASR model for run-on
recognition without any model modification. With a delay of
1.8 seconds in all output elements, all the experimental mod-
els retain their state-of-the-art performance when performing
offline inference. Our best online system, which successfully
employs three S2S models in a low-latency manner, achieves a
word-error-rate (WER) of 5.0% on the Switchboard benchmark.
To the best of our knowledge, this online accuracy is at par with
the state-of-the-art offline performance. We also demonstrate
that it is possible to achieve human performance as measured in
[23, 24] while producing output at very low latency.

2. Sequence-to-sequence Based
Low-latency ASR

In this section, we first describe different sequence-to-sequence
ASR architectures investigated in this paper. We then present
the proposed incremental inference with two stability detection
methods.

2.1. Models

There have been two efficient approaches for making S2S ASR
systems. The first approach employs LSTM layers in both
encoder and decoder networks, while the second follows the
Transformer architecture [25] which uses solely self-attention

ar
X

iv
:2

01
0.

03
44

9v
5

 [
cs

.C
V

]
 2

6
Ju

l 2
02

1

Page 12 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Figure 1: Incremental inference for low-latency S2S ASR

modules to construct the whole S2S network. In this work,
we investigate both of the S2S architectures for the online low-
latency setting.

Our LSTM-based S2S model employs two time-delay neu-
ral network (TDNN) layers [26, 27] with a total time stride
of four for down-sampling followed by several bidirectional
LSTM layers to encode the input spectrogram. In the decoder,
we adopt two layers of unidirectional LSTMs for modeling the
sequence of sub-word labels and the multi-head soft-attention
function proposed in [25] to generate attentional context vec-
tors. In detail, the LSTM-based model works as the following
neural network functions:

enc = LSTM(TDNN(spectrogram))

emb = LSTM(Embedding(symbols))

ctx = SoftAttention(emb, enc, enc)

y = Softmax(ctx+ emb)

In the Transformer model, the down-sampling is handled
by a linear projection layer on four consecutive stacked fea-
ture vectors. The rest of the model architecture is similar to
the Transformer approach proposed for speech recognition in
[6]. We also adopt the layer stochastic technique to efficiently
employ more self-attention layers in both encoder and decoder.

For more details of the model architectures and offline eval-
uations, we would refer the readers to [7] and [6].

2.2. Incremental Inference

Figure 1 illustrates our proposed architecture that allows S2S
models to produce incremental transcriptions on a speech
stream. In the architecture, we handle the two tasks of infer-
ence and stability detection by two separate components in a
processing pipeline. The first step in the pipeline is to wait for a
chunk of acoustic frames with a predefined length (i.e., 200ms),
which is then sent to the inference component. The inference
component needs to accumulate all the chunks received so far
and extend the current stable hypothesis to produce a set of new
unstable hypotheses. This unstable set is then provided to the
stability detection component for detecting a longer stable hy-
pothesis.

As the stability detection is handled separately, we are able
to involve multiple models for the inference to improve recog-
nition accuracy. The involved models can be S2S models with
different architectures or language models trained on different
text data. All of these models can be uniformly combined via
the ensemble technique.

2.3. Stability Detection

Stability detection is the key to make the system work in the
incremental manner and to produce low latency output. For
an HMM based speech recognition system, stability conditions
can be determined incrementally during the time-synchronous
Viterbi search [28, 29, 30]. Due to lack of time alignment in-
formation and unstable internal hidden states (e.g., of a bidirec-
tional encoder), it is not straightforward to apply the same idea
to S2S models. In this work, we investigate a combination of
two stability detection conditions for incremental S2S speech
recognition:

• Shared prefix in all hypotheses: Similar to the immor-
tal prefix [28, 30] in HMM ASR, this condition happens
when all the active hypotheses in the beam-search share
the same prefix. However, different from HMM ASR,
this condition may not strongly lead to an immortal par-
tial hypothesis due to the unstable search network states
in S2S beam-search.

• Best-ranked prefix with reliable endpoint: Since it
may require a long delay for a shared prefix to happen,
we also consider a different approach to improve the la-
tency. We make use of the observation from [29] for
HMM ASR, that the longer a prefix remains to be part of
the most likely hypothesis, the more stable it is. Applied
to S2S models, we need a method to align a prefix with
audio frames, and so be able to find its endpoint in time.
We follow the approach in [18] for the estimation of a
prefix endpoint. First, this approach requires to train a
single-head attention LSTM-based S2S model with the
attention-based constraint loss [18]. Then, the endpoint
of a prefix C is estimated during incremental inference
by finding a time tc such that the sum of all attention
scores from the covering window [0, tc] is at least 0.95.
After that, we can measure ∆ as the difference between
the estimated endpoint and the end of the audio stream.
∆ will be used as the single input to decide the prefix C
is reliable enough and considered to output.

3. Measure of Latency
Latency is one of the most important factors that decide the us-
ability of an user-based online ASR system. A latency measure
needs to reflect the actual delay that the users perceive so that
the improvement of latency can lead to better usability. Strictly,
the latency observed by a user for a single word is the time dif-
ference between when the word was uttered and when its tran-
script appeared to the user and will never be changed again. We
formulate this complete latency as follows.

Page 13 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Let’s assume a word w has been uttered, i.e., completely
pronounced, at time Uw. Let Cw be the time that the ASR sys-
tem can start to process the audio of w and that the ASR system
can confidently infer w after a delay of Dw, the time needed to
perform the inference. The user-perceived latency with regard
to w is then:

Latencyw = Cw +Dw + Tw − Uw

where Tw presents the transmitting time for audio and text data.
Tw is usually small and can be omitted.

For a speech utterance S consisting of N words w1, w2,..
wN , we are interested in the average latency:

LatencyS =

N∑
i

(Dwi + Cwi − Uwi)/N

=

N∑
i

Dwi/N +

N∑
i

Cwi/N −
N∑
i

Uwi/N

=

N∑
i

Dwi/N +

N∑
i

Cwi/N −
N∑
i

(Uwi − δ)/N + δ

= Davg + Cavg − Uavg−δ + δ

In the final equation, the first term represents the computational
delay. If we normalize this term by length of the decoding audio
segments, then we obtain the real-time factor of the ASR sys-
tem. The second term indicates how much acoustic evidence
the model needs to confidently decide on its output. This la-
tency term makes the difference in calculating the latency for
online vs. offline processing. For offline processing, it is always
a constant for a specific test set, since all the offline transcripts
are output at the end of the test set.

To estimate the third term, we usually need to use an ex-
ternal time alignment system, e.g. a Viterbi alignment using an
Hidden Markov Model (HMM) based acoustic model. It is in-
convenient to re-run the time alignment for every new transcript.
To cope with this issue, [18] introduced a fixed delay δ for all
the outputs, and proposed to pre-compute a set of Uavg−δ for
different δ. Later on, only the calculation of Cavg is required
as the average delay can be found by comparing Cavg with the
pre-computed set.

The latency improvement requires the optimization of both
termsDavg and Cavg which we refer to as computation latency
and confidence latency. While computation latency can be im-
proved by faster hardware or improved implementations for the
search, confidence latency mainly depends on the recognition
model.

4. Experimental Setup
Our experiments were conducted on the Fisher+Switchboard
corpus consisting of 2,000 hours of telephone conversation
speech. The Hub5’00 evaluation data was used as the test set,
reporting separate performance numbers for the Switchboard
(SWB) and CallHome (CH) portions.

All our models use the same input features of 40 dimen-
sional log-mel filterbanks to predict 4,000 byte-pair-encoded
(BPE) sub-word units. During training, we employ the com-
bination of two data augmentation methods Dynamic Time
Stretching and SpecAugment [7] to reduce model overfitting.
Adam with an adaptive learning rate schedule is used to per-
form 200,000 updates. The model parameters of the 5 best
epochs according to the perplexity on the cross-validation set
are averaged to produce the final model.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

U
av

g-
δ

δ [seconds]

0.0s

0.25s

0.5s

1.0s
1.5s

2.0s

Figure 2: Confidence latency conversion.

4.1. Latency Evaluation

We evaluate our systems with the decomposed latency terms
from Section 3. Computation latency is measured every time
when incremental inference is performed, while for confidence
latency we adopt a similar approach to [18] to estimate the terms
Cavg and Uavg . First, we build a good HMM-based force-
alignment system and use it to find time alignment for the test
set transcripts. Uavg is calculated as the average of the ending
times of all the transcript words found by the alignment system.
To normalize Uavg between 0 and 1, all the time alignment in-
dexes are divided by their utterance lengths. We then shift the
time indexes to the right with different δ (the delay term) to
compute Uavg−δ . This results in a conversion chart illustrated
in Figure 2. Later on, Cavg is computed the same way for the
systems, and the corresponding delay is extracted from the con-
version chart.

Table 1: Experimental systems and their offline accuracy. The
optimal beam size of 8 was found for all the systems.

ID Model Type #Params SWB CH
S1 6x2 LSTM-1024 162M 5.8 11.8
S2 6x2 LSTM-1536 258M 5.3 11.5
T1 24x8 Transformer 111M 5.8 11.9
E1 S1 + S2 420M 5.3 10.9
E2 S1 + S2 + T1 531M 5.0 10.1

5. Results
5.1. Models and Offline Accuracy

We constructed two LSTM-based models with different model
sizes. The smaller one uses 1-head attention and was trained
with the attention-based constraint loss proposed in [18] to pre-
vent the attention function from using future context, while the
bigger uses 8-head attention and produces better accuracy. The
smaller model S1 can be used either for inference or to extract
the endpoint of a hypothesis prefix following [18]. Addition-
ally, we experiment with a transformer model which has 24
self-attention encoder layers and 8 decoder layers.

Table 1 shows the offline performance of all the investigated
S2S models in this work. The big LSTM model achieved the
best WER performance while the transformer performs worse.
However, the transformer is very efficient to supplement the
LSTM models in the combination. The ensemble of 3 models
(labeled as E3) results in a single system that achieved a 5.0%
WER on the SWB test set, which is on par with the state-of-the-
art performance on this benchmark.

Page 14 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Table 2: Computation and confidence latency when using
shared prefix condition.

Model Beam Size Comp. Conf. SWB
S1 8 0.10 1.50 5.8
S2 8 0.13 1.55 5.6
T1 8 0.19 1.50 5.8
T1 6 0.16 1.35 5.9
T1 4 0.12 0.70 6.6
E1 8 0.18 1.55 5.3
E2 8 0.29 1.50 5.0
E2 6 0.25 1.30 5.1
E2 4 0.20 0.80 5.7

5.2. Latency with Shared Prefix

We use an audio chunk size of 300ms to perform incremental
inference with the systems in Table 1. All inferences were per-
formed on a single Nvidia Titan RTX GPU. Table 2 shows the
WERs for SWB, computation latency and confidence latency
(see Section 3) for different beam sizes when only using the
share prefix strategy for stability detection.

As can be seen, the confidence latency is much larger than
the computation latency in all the experiments and shown to
be a more critical factor for final latency improvement. The
systems involving multiple S2S models require more compu-
tational power, however, they obtain better confidence latency
and accuracy due to the reduction of model uncertainty.

When using a high beam size (e.g., 8), all the experimental
systems can achieve their offline accuracy. This result reveals
interesting observations for making online S2S ASR systems.
First, as this condition is reliable among different S2S architec-
tures, it shows that all S2S ASR models may share the same
characteristic in which they tend not to use further context for
the inference of a given prefix at a particular time. This obser-
vation is consistent with the finding in [18] for the LSTM-based
S2S model. Secondly, it proves that the use of bidirectional en-
coders in online conditions is possible and even results in the
same optimal accuracy as in offline inference. Lastly, it reveals
a unified approach to build online ASR for different S2S ar-
chitectures. As an attractive advantage, this approach does not
require model modifications.

The best system using the shared prefix condition achieved
a WER of 5.0% and suffered an average delay of 1.79 seconds
which is slightly slower than the one with lowest latency.

5.3. Trade-off for Better Latency

To further improve the latency, we use both the stability detec-
tion strategies from Section 2.3. We do the combination via a
logical OR which means the stability is detected as soon as one
of the conditions applies. At the end, we can trade-off latency
against accuracy as the function of the term ∆ – the delay time
needed to finalize the endpoint of a prefix. Figure 3 presents
the trade-off curves for two systems, S1 and E2. In both sys-
tems, the model S1 is used for detecting the best-ranked prefix
condition.

As can be seen, both systems can achieve much better la-
tency (of only 1.30 seconds) with only a slight increase in WER
(e.g., 0.1% absolute). The ensemble system E2 achieves a la-
tency of 0.85 seconds while yielding the same accuracy as S1.
Human performance (5.5%) can be reached with an average de-
lay of only 1 second. Note that, the WER for human perfor-
mance was extracted as the average of the two studies [23] and

Figure 3: Trade-off between latency and accuracy. Beam size of
8 is used for both systems.

[24].

5.4. Compared to Other Works

Table 3 presents the WER performance from recent studies for
online and offline conversational speech recognition systems.
Human WER performance was obtained in 2016 with a com-
bination of different HMM hybrid ASR systems. While until
2019 and 2020, new records on offline conversational speech
was set with end-to-end sequence-to-sequence ASR systems.
We found only a few attempts [31, 32] that make streaming ASR
for this benchmark. In these studies, the accuracy between of-
fline and streaming conditions was shown to be in clear margins.
In a different manner, we show the offline accuracy can be pos-
sibly reached with our proposed low-latency S2S system. Our
best achieved online WER is slightly behind the state-of-the-art
offline performance on the Switchboard benchmark.

Table 3: Results from other works on SWB test set.

Model Train. Data Condition WER
Hybrid [24] (2017) SWB+Fisher Offline 5.5
Hybrid [33] (2018) SWB+Fisher Offline 5.1
S2S [7] (2019) SWB+Fisher Offline 5.2
S2S [34] (2020) SWB+Fisher Offline 4.9
S2S [35] (2020) SWB+Fisher Offline 4.8
CTC [31] (2019) SWB Streaming 9.1
Transducer [32] (2020) SWB Offline 12.8
Transducer [32] (2020) SWB Streaming 17.0
Ours SWB+Fisher Low-latency 5.0

6. Conclusion
We have shown a unified approach to construct online and low-
latency ASR systems for different S2S architectures. The pro-
posed online system employing three S2S models works either
in an accuracy-optimized fashion that achieves state-of-the-art
performance on telephone conversation speech or in a very low-
latency manner while still producing the same or better accuracy
as the reported human performance.

7. Acknowledgement
The project ELITR leading to this publication has received
funding from the European Unions Horizon 2020 Research and
Innovation Programme under grant agreement No 825460.

Page 15 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

8. References
[1] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-

gio, “Attention-based models for speech recognition,” in Ad-
vances in neural information processing systems, 2015.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in ICASSP 2016. IEEE, 2016, pp. 4960–
4964.

[3] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in ICASSP 2018, 2018.

[4] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training
of end-to-end attention models for speech recognition,” in Proc.
Interspeech 2018, 2018.

[5] C. Weng, J. Cui, G. Wang, J. Wang, C. Yu, D. Su, and D. Yu, “Im-
proving attention based sequence-to-sequence models for end-to-
end english conversational speech recognition,” in Proc. Inter-
speech 2018, 2018.

[6] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Muller, and A. Waibel,
“Very deep self-attention networks for end-to-end speech recog-
nition,” Proc. of Interspeech 2019, 2019.

[7] T.-S. Nguyen, S. Stüker, J. Niehues, and A. Waibel, “Improving
sequence-to-sequence speech recognition training with on-the-fly
data augmentation,” in ICASSP 2020. IEEE, 2020, pp. 7689–
7693.

[8] T. S. Nguyen, J. Niehues, E. Cho, T.-L. Ha, K. Kilgour, M. Muller,
M. Sperber, S. Stueker, and A. Waibel, “Low latency asr for si-
multaneous speech translation,” arXiv preprint arXiv:2003.09891,
2020.

[9] J. Niehues, T. S. Nguyen, E. Cho, T.-L. Ha, K. Kilgour, M. Müller,
M. Sperber, S. Stüker, and A. Waibel, “Dynamic transcription
for low-latency speech translation,” in Proc. of Interspeech 2016,
2016.

[10] N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo, and
S. Bengio, “An online sequence-to-sequence model using partial
conditioning,” in Advances in Neural Information Processing Sys-
tems, 2016, pp. 5067–5075.

[11] C. Raffel, M.-T. Luong, P. J. Liu, R. J. Weiss, and D. Eck, “Online
and linear-time attention by enforcing monotonic alignments,” in
Proceedings of the 34th ICML, 2017, pp. 2837–2846.

[12] C.-C. Chiu and C. Raffel, “Monotonic chunkwise attention,”
arXiv preprint arXiv:1712.05382, 2017.

[13] R. Fan, P. Zhou, W. Chen, J. Jia, and G. Liu, “An online attention-
based model for speech recognition,” Proc. Interspeech 2019, pp.
4390–4394, 2019.

[14] H. Miao, G. Cheng, P. Zhang, T. Li, and Y. Yan, “Online hy-
brid ctc/attention architecture for end-to-end speech recognition,”
Proc. of Interspeech 2019, pp. 2623–2627, 2019.

[15] E. Tsunoo, Y. Kashiwagi, T. Kumakura, and S. Watanabe, “To-
wards online end-to-end transformer automatic speech recogni-
tion,” arXiv preprint arXiv:1910.11871, 2019.

[16] H. Miao, G. Cheng, C. Gao, P. Zhang, and Y. Yan, “Transformer-
based online ctc/attention end-to-end speech recognition architec-
ture,” in ICASSP 2020, 2020, pp. 6084–6088.

[17] N. Moritz, T. Hori, and J. Le, “Streaming automatic speech recog-
nition with the transformer model,” in ICASSP 2020. IEEE,
2020, pp. 6074–6078.

[18] T.-S. Nguyen, N.-Q. Pham, S. Stueker, and A. Waibel, “High
performance sequence-to-sequence model for streaming speech
recognition,” Proc. of Interspeech 2020, 2020.

[19] C. Wu, Y. Wang, Y. Shi, C.-F. Yeh, and F. Zhang, “Streaming
transformer-based acoustic models using self-attention with aug-
mented memory,” arXiv preprint arXiv:2005.08042, 2020.

[20] S. Zhang, Z. Gao, H. Luo, M. Lei, J. Gao, Z. Yan, and L. Xie,
“Streaming chunk-aware multihead attention for online end-to-
end speech recognition,” arXiv preprint arXiv:2006.01712, 2020.

[21] K. Kumar, C. Liu, Y. Gong, and J. Wu, “1-d row-convolution lstm:
Fast streaming asr at accuracy parity with lc-blstm,” Proc. Inter-
speech 2020, pp. 2107–2111, 2020.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, and G. Zweig, “Achieving human parity in conversational
speech recognition,” arXiv preprint arXiv:1610.05256, 2016.

[24] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dim-
itriadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L. Lim et al.,
“English conversational telephone speech recognition by humans
and machines,” arXiv preprint arXiv:1703.02136, 2017.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017.

[26] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J.
Lang, “Phoneme recognition using time-delay neural networks,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 3, pp. 328–339, March 1989.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[28] P. Brown, J. Spohrer, P. Hochschild, and J. Baker, “Partial trace-
back and dynamic programming,” in ICASSP 82, vol. 7. IEEE,
1982, pp. 1629–1632.

[29] S. Wachsmuth, G. A. Fink, and G. Sagerer, “Integration of pars-
ing and incremental speech recognition,” in 9th of the EUSIPCO
1998, 1998, pp. 1–4.

[30] E. O. Selfridge, I. Arizmendi, P. A. Heeman, and J. D. Williams,
“Stability and accuracy in incremental speech recognition,” in
Proceedings of the SIGDIAL 2011 Conference, 2011, pp. 110–
119.

[31] K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury, and M. Picheny,
“Forget a bit to learn better: Soft forgetting for ctc-based auto-
matic speech recognition.” in INTERSPEECH, 2019, pp. 2618–
2622.

[32] G. Kurata and G. Saon, “Knowledge distillation from offline
to streaming rnn transducer for end-to-end speech recognition,”
Proc. Interspeech 2020, pp. 2117–2121, 2020.

[33] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,
“The microsoft 2017 conversational speech recognition system,”
in 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2018, pp. 5934–5938.

[34] W. Wang, Y. Zhou, C. Xiong, and R. Socher, “An investigation of
phone-based subword units for end-to-end speech recognition,”
arXiv preprint arXiv:2004.04290, 2020.

[35] Z. Tüske, G. Saon, K. Audhkhasi, and B. Kingsbury, “Sin-
gle headed attention based sequence-to-sequence model for
state-of-the-art results on switchboard-300,” arXiv preprint
arXiv:2001.07263, 2020.

Page 16 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

C KIT’s IWSLT 2021 Offline Speech Translation System

Proceedings of the 18th International Conference on Spoken Language Translation, pages 125–130
Bangkok, Thailand (Online), August 5–6, 2021. ©2021 Association for Computational Linguistics

125

KIT’s IWSLT 2021 Offline Speech Translation System

Tuan-Nam Nguyen, Thai-Son Nguyen, Christian Huber, Maximilian Awiszus,

Ngoc-Quan Pham, Thanh-Le Ha, Felix Schneider, Sebastian Stüker, Alexander Waibel

Karlsruhe Institute of Technology

firstname.lastname@kit.edu

Abstract

This paper describes KIT’submission to the

IWSLT 2021 Offline Speech Translation Task.

We describe a system in both cascaded con-

dition and end-to-end condition. In the cas-

caded condition, we investigated different end-

to-end architectures for the speech recognition

module. For the text segmentation module,

we trained a small transformer-based model on

high-quality monolingual data. For the trans-

lation module, our last year’s neural machine

translation model was reused. In the end-to-

end condition, we improved our Speech Rela-

tive Transformer architecture to reach or even

surpass the result of the cascade system.

1 Introduction

As in previous years, the cascade system’s pipeline

is constituted by an ASR module, a text segmen-

tation module and a machine translation module.

In this year’s evaluation campaign, we investigated

only sequence-to-sequence ASR models with three

architectures. The segmentation module is basi-

cally a monolingual system which translates a dis-

fluent, broken, uncased text (i.e. ASR outputs) into

a more fluent, written-style text with punctuations

in order to match the data conditions of the trans-

lation system. The machine translation module’s

architecture is the same as the previous year’s. For

the end-to-end system, we improved from our last

year’s Speech Relative Transformer architecture

(Pham et al., 2020a). As a result, the end-to-end

system can produce better results on certain test

sets and approach the performance on some others

compared to the cascade system this year, while

the end-to-end system was the dominant approach

last year.

The rest of the paper is organized as followed.

Section 2 describes the data set used to train and

test the system. It is then followed by Section 3

providing the description and experimental results

of both the cascade and the end-to-end system. In

the end, we conclude the paper with Section 4.

2 Data

Speech Corpora. For training and evaluation

of our ASR models, we used Mozilla Common

Voice v6.1 (Ardila et al., 2019), Europarl (Koehn,

2005), How2 (Sanabria et al., 2018), Librispeech

(Panayotov et al., 2015), MuST-C v1 (Di Gangi

et al., 2019), MuST-C v2 (Cattoni et al., 2021) and

Tedlium v3 (Hernandez et al., 2018) dataset. The

data split is presented in the following table 1.

Table 1: Summary of the English data-sets used for

speech recognition

Corpus Utterances Speech data [h]

A: Training Data

Mozilla Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
Tedlium 268k 482

B: Test Data

Tedlium 1155 2.6
Librispeech 2620 5.4

Text Corpora. We collected the text parallel

training data as presented in Table 2.

3 Offline Speech Translation

We address the offline speech translation task by

two main approaches, namely cascade and end-to-

end. In the cascade condition, the ASR module

(Section 3.1) receives audio inputs and generates

raw transcripts, which will then pass through a

Segmentation module (Section 3.2) to formulate

well normalized inputs to our Machine Translation

module (Section 3.3). The MT outputs are the final

outputs of the cascade system. On the other hand,

Page 17 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

126

Table 2: Text Training Data

Dataset Sentences

TED Talks (TED) 220K

Europarl (EPPS) 2.2MK

CommonCrawl 2.1M

Rapid 1.21M

ParaCrawl 25.1M

OpenSubtitles 12.6M

WikiTitle 423K

Back-translated News 26M

the end-to-end architecture is trained to directly

translate English audio inputs into German text

outputs (Section 3.4).

3.1 Speech Recognition

Data preparation and Segmentation tool Af-

ter collecting all audios from all data sets men-

tioned in Section 2, we calculated 40 features of

Mel-filterbank coefficients for ASR training. To

generate labels for the sequence-to-sequence ASR

models, we used the Sentence-Piece toolkit (Kudo

and Richardson, 2018) to train 4000 different byte-

pair-encoding (BPE). The WerRTCVAD toolkit

(Wiseman, 2016) was used to segment the audio in

the testing phase.

Model As in previous years (Pham et al., 2019a,

2020b), we used only sequence-to-sequence ASR

models, which are based on three different net-

work architectures: The long short-term mem-

ory (LSTM), the Transformer and the Conformer.

LSTM-based models (Nguyen et al., 2020) consist

of 6 bidirectional layers for the encoder and 2 uni-

directional layers for the decoder, both encoder and

decoder layers have 1536 units. The Transformer-

based models presented in (Pham et al., 2019b)

have 24 layers for the encoder and 8 layers for

the decoder. The Conformer-based models (Gulati

et al., 2020) comprise 16 layers for the encoder and

6 layers for the decoder. In both the Transformer-

based and the Conformer-based models, the size of

each layer is 512 and the size of the hidden state in

the feed-forward sublayer is 2048. The speech data

augmentation technique was used to reduce overfit-

ting as described in (Nguyen et al., 2020). In order

to train a deep network effectively, we also applied

Stochastic Layers (Pham et al., 2019b) with a drop-

ping layer rate of 0.5 on both Transformer-based

and Conformer-based models.

3.2 Text Segmentation

The text segmentation in the cascaded pipeline

serves as a normalization on the ASR output, which

usually lacks punctuation marks, proper sentence

boundaries and reliable casing. On the other hand,

the machine translation system is often trained on

well-written, high-quality bilingual data. Follow-

ing the idea from (Sperber et al., 2018a), we build

the segmentation as a monolingual translation sys-

tem, which translates from lower-cased, without-

punctuation texts into texts with case information

and punctuation, prior to the machine translation

module.

The monolingual translation for text segmenta-

tion is implemented using our neural speech transla-

tion framework NMTGMinor1(Pham et al., 2020a).

It is a small transformer architecture, consisting of

a 4-layer encoder and 4-layer decoder, in which

each layer’ size is 512, while the inner size of

feed-forward network inside each layer is 2048.

The encoder and decode are self-attention blocks,

which have 4 parallel attention heads. The training

data for that are the English part extracted from

available multilingual corpora: EPPS, NC, Global

Voices and TED talks. We trained the model for 10

epochs, then we fine-tuned it on the TED corpus for

30 epochs more with stronger drop-out rate. Fur-

thermore, to simulate possible errors in the ASR

outputs, a similar model is trained on artificial noisy

data and the final model is the ensemble of the two

models.

The trained model is then utilized to translate the

ASR outputs in a shifting window manner and the

decisions are drawn by a simple voting mechanism.

For more details, please refer to (Sperber et al.,

2018a).

3.3 Machine Translation

For the machine translation module, we re-use the

English→German machine translation model from

our last year’ submission to IWSLT (Pham et al.,

2020b). More than 40 millions sentence pairs being

extracted from TED, EPPS, NC, CommonCrawl,

ParaCrawl, Rapid and OpenSubtitles corpora were

used for training the model. In addition, 26 mil-

lions sentence pairs are generated from the back-

translation technique by a German→English trans-

lation system. A large transformer architecture was

trained with Relative Attention. We adapted to the

in-domain by fine-tuning on TED talk data with

1https://github.com/quanpn90/NMTGMinor

Page 18 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

127

stricter regularizations. The same adapted model

was trained on noised data synthesized from the

same TED data. The final model is the ensemble

of the two.

3.4 End-to-End Model

Corpora This year, the training data consists

of the second version of the MUST-C cor-

pus (Di Gangi et al., 2019), the Europarl cor-

pus (Iranzo-Sánchez et al., 2020), the Speech Trans-

lation corpus and the CoVoST-2 (Wang et al., 2020)

corpus provided by the organizer. The speech fea-

tures are generated with the in-house Janus Recog-

nition Toolkit. The ST dataset is handled with an

additional filtering step using an English speech

recognizer (trained with the its transcripts with the

additional Tedlium-3 training data).

Following the success of generating synthetic

audio utterances, the transcripts in the Tedlium-3

corpus are translated into German using the cascade

built in the previous year’s submission (Pham et al.,

2020b). In brief, the translation process required us

to preserve the audio-text alignment from the origi-

nal data collection and segmentation process. As

a results, we used the Transformer-based punctu-

ation inserting system from IWSLT2018 (Sperber

et al., 2018b) to reconstruct the punctuations for

the transcripts followed by the translation process

that preserves the same segmentation information.

Compared to the human translation from the speech

translation datasets, this translation is relative nois-

ier and incomplete (due to the segmentations are

not necessarily aligned with grammatically correct

sentences).

The end result of the filtering and synthetic cre-

ation process is the complete translation set, as

summarised in Table 3

Table 3: Training data for E2E translation models.

Data Utterances Total time

MuST-C 229K 408h

Europarl 32K 60h

Speech Translation 142K 160h

Tedlium-3 268K 415h

CoVoST 288K 424h

During training, the validation data is the Devel-

opment set of the MuST-C corpus. The reason is

that the SLT testsets often do not have the aligned

audio and translation, while training end-to-end

models often rely on perplexity for early stopping.

Modeling The main architecture is the deep

Transformer (Vaswani et al., 2017) with stochas-

tic layers (Pham et al., 2019b). The encoder self

attention layer uses Bidirectional relative atten-

tion (Pham et al., 2020a) which models the relative

distance between one position and other positions

in the sequence. This modeling is bidirectional

because the distance is distinguished for each direc-

tion from the perspective of one particular position.

The main models use a “Big” configuration with 16

encoder layers and 6 decoder layers, and they are

randomly dropped in training according to the lin-

ear schedule presented in the original work, where

the top layer has the highest dropout rate p = 0.5.

The model size of each layer is 1024 and the in-

ner size is 4096. We experimented with different

activation functions including GELU (Hendrycks

and Gimpel, 2016), SiLU (Elfwing et al., 2018)

and the gated variants similar to the gated linear

units (Dauphin et al., 2017). Also, each transformer

block (encoder and decoder) is equipped with an-

other feed-forward neural network in the begin-

ning (Lu et al., 2019). Our preliminary experiments

showed that GeLU and SiLU provided a slightly

better performance than ReLU, and our final model

is the ensemble of the three configurations that are

identical except the activation functions.

First, the encoders are pretrained using the data

portions containing English texts to make training

SLT stable. With the initialized encoder, the net-

works can be trained with an aggressive learning

rate with 4096 warm-up steps. Label-smoothing

and dropout rates are set at 0.1 and 0.3 respectively

for all models. Furthermore, all speech inputs are

augmented with spectral augmentation (Park et al.,

2019; Bahar et al., 2019). All models are trained

for 200000 steps, each consists of accumulated

360000 audio frames. Using the model setup like

above, we managed to fit a batch size of around

16000 frames to 24 GB of GPU memory.

Speech segmentation As reflected from last

year’s experiments, audio segmentation plays an

important role in the performance of the whole

system, and the end-to-end model unfortunately

does not have control of segmentation, as it is a

prerequisite before training one. During evaluation,

we relied on the WerRTCVAD toolkit (Wiseman,

2016) to cut the long audio files into segments of

reasonable length, and the tool is also able to rule

out silence and events that do not belong to human

speech, such as noise and music.

Page 19 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

128

Overall, we improved the submission from last

year (Pham et al., 2020b) using stronger models

together with a more accurate segmentation tool.

3.5 Experimental Results

3.5.1 Cascade Offline Speech Translation

Speech Recognition. We tested our ASR sys-

tems on two datasets, Tedlium and Libri test set.

The ensemble of LSTM-based and Conformer-

based sequence-to-sequence model provide the best

results, which are 2.4 and 3.9 WERs respectively

for two test set Table 4.

Table 4: WER on Libri and Tedlium sets

Data Libri Tedlium

Conformer-based 3.0 4.8

Transformer-based 3.2 4.9

LSTM-based 2.6 3.9

Ensemble 2.4 3.9

Machine Translation. We do not train any new

machine translation module but re-use last year’s

model, thus, we do not conduct experiments and

comparisons with different machine translation sys-

tems. We submitted one cascased model with our

audio segmentation.

3.5.2 End-to-end Offline Speech Translation

Our models are tested on two different setups. On

the one hand, we evaluated the model on the tst-

COMMON (2nd version) of the MuST-C corpora.

Due to the incompatibility between the models and

the audio data that requires resegmentation, we

rely on the dev and test sets of MuST-C to evaluate

the ability to translate on “ideal” conditions. As

mentioned above, our ensemble managed to reach

32.4 BLEU points on this test set2.

On the other hand, we used the testsets from

2010 to 2015 to measure the progress from last

year in the condition requiring audio segmentation.

In this particular comparison as shown in Table 5,

we showed that using a stronger model together

with better voice detection not only improves the

SLT results by up to 1.9 BLEU points (in tst2014)

but also outperforms the strong cascade in 2 differ-

ent sets: tst2013 and tst2014, in which the differ-

ence could be even 1 BLEU point. There is still

a performance gap in the last two tests, however,

2Unfortunately the comparison to last year tst-COMMON
(30.6 is not available due to version mismatch.

a strong E2E system can now trade blow with a

strongly tuned cascade. The deciding factor, in our

opinion, is audio segmentation because this is the

sole advantage of the cascade which can recover

from badly cut segments3.

Table 5: ST: Translation performance in BLEU↑ on

IWSLT testsets (re-segmentation required). Progres-

sive results from this year and last year end-to-end

(E2E) and cascades (CD) are provided.

Testset → CD 2020 E2E 2020 E2E 2021

tst2010 26.68 24.27 25.28

tst2013 28.60 28.13 29.62

tst2014 25.64 25.46 27.32

tst2015 24.95 21.82 22.13

4 Conclusion

In this year’s evaluation campaign, the end-to-end

model proves to be a very promising approach

since it can compete or even transcend the best

cascade model in offline speech translation task.

As a note for future work, we would like to investi-

gate two-stage speech translation models (Sperber

et al., 2019) using transformer architectures and

compare them with our recent speech translation

end-to-end models.

Acknowledgments

The work leading to these results has received

funding from the European Union under grant

agreement n◦825460 and the Federal Ministry of

Education and Research (Germany)/DLR Projek-

tträger Bereich Gesundheit under grant agreement

n◦ 01EF1803B.

References

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. arXiv preprint
arXiv:1912.06670.

Parnia Bahar, Albert Zeyer, Ralf Schlüter, and Her-
mann Ney. 2019. On using specaugment for
end-to-end speech translation. arXiv preprint
arXiv:1911.08876.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa
Bentivogli, Matteo Negri, and Marco Turchi. 2021.

3Changing the VAD parameters does not affect the perfor-
mance of the cascade significantly, while the E2E can be badly
afffected

Page 20 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

129

Must-c: A multilingual corpus for end-to-end
speech translation. Computer Speech & Language,
66:101155.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933–941. PMLR.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C:
a Multilingual Speech Translation Corpus. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural Networks, 107:3–11.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented trans-
former for speech recognitio. In Proc. Interspeech
2020.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

François Hernandez, Vincent Nguyen, Sahar Ghan-
nay, Natalia Tomashenko, and Yannick Estève. 2018.
Ted-lium 3: twice as much data and corpus repar-
tition for experiments on speaker adaptation. In
International Conference on Speech and Computer,
pages 198–208. Springer.

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
Javier Jorge, Nahuel Roselló, Adrià Giménez, Al-
bert Sanchis, Jorge Civera, and Alfons Juan. 2020.
Europarl-st: A multilingual corpus for speech trans-
lation of parliamentary debates. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
8229–8233. IEEE.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin
Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu. 2019.
Understanding and improving transformer from a
multi-particle dynamic system point of view. arXiv
preprint arXiv:1906.02762.

Thai-Son Nguyen, Sebastian Stueker, Jan Niehues,
and Alex Waibel. 2020. Improving sequence-
to-sequence speech recognition training with
on-the-fly data augmentation. arXiv preprint
arXiv:1910.13296.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Ngoc-Quan Pham, Thanh-Le Ha, Tuan-Nam Nguyen,
Thai-Son Nguyen, Elizabeth Salesky, Sebastian
Stüker, Jan Niehues, and Alex Waibel. 2020a. Rel-
ative Positional Encoding for Speech Recognition
and Direct Translation. In Proc. Interspeech 2020,
pages 31–35.

Ngoc-Quan Pham, Thai-Son Nguyen, Thanh-Le Ha,
Juan Hussain, Felix Schneider, Jan Niehues, Sebas-
tian Stüker, and Alexander Waibel. 2019a. The iwslt
2019 kit speech translation system. In Proceedings
of the 16th International Workshop on Spoken Lan-
guage Translation (IWSLT 2019).

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Muller, and Alex Waibel. 2019b. Very deep
self-attention networks for end-to-end speech recog-
nition. arXiv preprint arXiv:1904.13377.

Ngoc-Quan Pham, Felix Schneider, Tuan-Nam
Nguyen, Thanh-Le Ha, Thai-Son Nguyen, Maxi-
milian Awiszus, Sebastian Stüker, and Alexander
Waibel. 2020b. Kit’s iwslt 2020 slt translation
system. In Proceedings of the 17th International
Workshop on Spoken Language Translation (IWSLT
2020).

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar,
Desmond Elliott, Loı̈c Barrault, Lucia Specia, and
Florian Metze. 2018. How2: a large-scale dataset
for multimodal language understanding. arXiv
preprint arXiv:1811.00347.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-Passing Models for
Robust and Data-Efficient End-to-End Speech Trans-
lation. In Proc. ACL 2019.

Matthias Sperber, Ngoc-Quan Pham, Thai-Son
Nguyen, Jan Niehues, Markus Müller, Thanh-Le
Ha, Sebastian Stüker, and Alex Waibel. 2018a.
KIT’s IWSLT 2018 SLT Translation System. In
15th International Workshop on Spoken Language
Translation 2018. IWSLT.

Page 21 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

130

Matthias Sperber, Ngoc Quan Pham, Thai Son Nguyen,
Jan Niehues, Markus Müller, Thanh-Le Ha, Sebas-
tian Stüker, and Alex Waibel. 2018b. KIT’s IWSLT
2018 SLT Translation System. In ”Proceedings
of the 15th International Workshop on Spoken Lan-
guage Translation (IWSLT 2018)”, Brussels, Bel-
gium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Changhan Wang, Anne Wu, and Juan Pino. 2020. Cov-
ost 2: A massively multilingual speech-to-text trans-
lation corpus.

John Wiseman. 2016. python-webrtcvad. https://

github.com/wiseman/py-webrtcvad.

Page 22 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

D Efficient Weight factorization for Multilingual Speech Recognition

ar
X

iv
:2

10
5.

03
01

0v
1

 [
cs

.C
L

]
 7

 M
ay

 2
02

1

Efficient Weight factorization for Multilingual Speech Recognition

Ngoc-Quan Pham1 Tuan-Nam Nguyen1 Sebastian Stueker1 Alex Waibel1,2

1Interactive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Carnegie Mellon University, Pittsburgh PA, USA

ngoc.pham@kit.edu

Abstract

End-to-end multilingual speech recognition involves using a

single model training on a compositional speech corpus includ-

ing many languages, resulting in a single neural network to han-

dle transcribing different languages. Due to the fact that each

language in the training data has different characteristics, the

shared network may struggle to optimize for all various lan-

guages simultaneously. In this paper we propose a novel mul-

tilingual architecture that targets the core operation in neural

networks: linear transformation functions. The key idea of the

method is to assign fast weight matrices for each language by

decomposing each weight matrix into a shared component and

a language dependent component. The latter is then factorized

into vectors using rank-1 assumptions to reduce the number of

parameters per language. This efficient factorization scheme is

proved to be effective in two multilingual settings with 7 and 27
languages, reducing the word error rates by 26% and 27% rel.

for two popular architectures LSTM and Transformer, respec-

tively.

Index Terms: speech recognition, multilingual, transformer,

lstm, weight factorization, weight decomposition

1. Introduction

Multilingual modeling has been an important topic in applying

sequence-to-squence models to language applications ranging

from machine translation [1, 2] to automatic speech recognition

(ASR) [3]. It is possible to employ one single neural model for

multiple datasets with different languages with the goal of cap-

turing the shared features between the languages. This method

has been widely used to help under-resourced languages ben-

efiting from the knowledge acquired from the richer counter-

parts.

It is noticeable that the recent multilingual neural models

are based on a semi-shared mechanism in which the largest

body of the network architecture is exposed to all languages,

while a smaller weight subset provides a language specific bias.

This was shown to be more effective in a multilingual scenario

than fully sharing the whole network[1, 2] since each language

has certain unique features, and the single architecture often

struggles to handle a variety of languages [4].

There are two main drawbacks that are typically presented

in the existing implementations of the semi-shared mechanism.

On the one hand, the implementations often depends heavily on

a certain architecture being popular at the time, and the given

improvement is going to be diminished when a new architec-

ture evolves. For example, the language-specifically biased at-

tention [5] modified the self-attention architecture [6] specifi-

cally based on the assumption that each language can benefit

from a bias added to the attention scores. On the other hand,

the language-dependent components might require a consider-

able amount of parameters and struggles to scale to the num-

ber of languages. For example, the language adapters added to

the Transformer layers [7] are essentially feed-forward neural

network layers being similar to the counterpart already in the

shared Transformer body. A scenario with 20 languages con-

sequently generates hundreds of these layers accounting for a

large amount of parameters to be optimized.

In this work, we propose a multilingual architecture using

a factorization scheme that is both effective and highly scalable

with the number of languages involved. Moreover, this scheme

is applicable to any neural architectures as long as matrix-vector

multiplication is the dominant operation. The key idea of our

work is that each weight matrix in the shared architecture can

be factorized into a shared component and multiple additive

and multiplicative language dependent components. While each

language is assigned with extra weights to learn distinctive fea-

tures, simplicity and scalability are achieved by further repre-

senting those weights into as a rank-1 matrix, thus can be fac-

tored into two vectors. This method is demonstrated to be com-

putational friendly with a minimal overhead and can be applied

to a arbitrary neural architecture.

Subsequently, this weight factorization method is then eval-

uated on two different scenarios: one with 7 languages having

similar amounts of data, and one with 27 languages with various

extremely low resource data. The method is implemented on

two commonly used architectures: Long Short-Term Memories

(LSTM) and Transformers which show that both types of net-

works can benefit by weight factorization in multilingual ASR.

The reduction of error rate can be up to 47% rel. in the case

of low-resource languages such as Japanese1 and 15.5% rel. on

average with the moderately sized languages.

2. Methodology

A neural speech-to-text model transforms a source speech in-

put with N frames X = x1, x2, . . . , xN into a target text se-

quence withM tokens Y = y1, y2, . . . , yM . The encoder trans-

forms the speech input into higher level feature vectors hX
1...N .

The decoder jointly learns to generate the output distribution

oi based on the previous target tokens y1, y2, . . . , yi−1 while

looking for the relevant inputs from the input via the attention

mechanism [8, 6].

h
X
1...N = ENCODER(x1 . . . xN) (1)

h
Y
i = DECODER(yi, y1...i−1) (2)

ci = ATTENTION(hY
i , h1...N) (3)

oi = SOFTMAX(ci + h
Y
i) (4)

yi+1 = sample(oi) (5)

1Error is measured in characters error rate here.

Page 23 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Notably, there is a large variety of model architectures that

implement this encoder-decoder design. The core networks

in the encoder and decoder range from LSTM [9], convolu-

tion/TDNN [10, 11] to self-attention [12] or even a mix of the

above [?]

The universal multilingual framework [1, 2] employs a sin-

gle model to learn on a joint training dataset containing multi-

ple languages, which is different than the predating multi-way

encoder-decoder approach [13].

2.1. Multilingual weight composition

It can be seen that, the common ground of the aforementioned

architectures is the usage of linear combinations of lower level

features X ∈ RD which can be expressed as the matrix multi-

plication between input X and a weight matrix W . For exam-

ple, the LSTM contains four different projections for its forget,

input, output gates and candidate content [14], as can be seen in

Equation 6.

ft = sigmoid(W⊤

fxXt +W
⊤

fhHt−1 + bf) (6)

it = sigmoid(W⊤

ixXt +W
⊤

ihHt−1 + bi) (7)

ĉt = tanh(W⊤

cxXt +W
⊤

chHt−1 + bc) (8)

ot = sigmoid(W⊤

oxXt +W
⊤

ohHt−1 + bo) (9)

Similarly, the main components of the Transformer layers

are self-attention layers and feed-forward layers. While the lat-

ter are fundamentally two layers of linear projections, the for-

mer is also comprised of linear projections that generate queries

Q, keys K and values V from the input X:

Q = W
⊤

QX (10)

K = W
⊤

KX (11)

V = W
⊤

V X (12)

SelfAtt(X) = softmax(QK
⊤)V (13)

The main idea here is that each matrix multiplication Y =
W TX in the multilingual model can be decomposed into a

function of shared weights WS and additional language depen-

dent weights WML and WBL

Y = (WS ·WML +WBL)
⊤
X (14)

= (WS ·WML)
⊤
X +W

⊤

BLX (15)

Here the added weights include the first multiplicative term

WML that directly change the magnitude and direction of the

shared weights WS and the biased term WBL provides the net-

work with a content-based bias depending on the input features

X . Each language maintains a distinctive set of WML and

WBL so that the whole architecture is semi-shared.

2.2. Factorization

There is, however, an obstacle that both WML and WBL require

to be the same size with WS , which makes the language depen-

dent weights dominate the shared weights, while the intuition is

the opposite. Fortunately, it is possible to use rank-1 matrices

W̄ ∈ RDin×Dout that can be factorized into vectors [15, 16],

for example with two vectors r ∈ RDin and s ∈ RDout such

that W̄ = rs⊤ which reduces the number of parameters from

Din ×Dout to Din +Dout.

One drawback in this method is the lacking representational

power of Rank-1 matrices. One solution is to modify the fac-

torization into using k vectors per language so that there are

k independent weight factors followed by a summation, which

increases the rank of the additional weight matrices.

W̄ =
k∑

i

ris
⊤

i (16)

2.3. Computational cost

The factorization above is applied to both WML and WBL

to ensure that the dominated force is still the shared weights,

while each language at k = 1 is characterized by an additional
Din+Dout

Din×Dout
amount of weights. In a typical network architecture

with Din and Dout being typically 512−2048, this amounts for

0.1 − 0.3 percents of the total network’s weights per language,

therefore scalable to hundreds.

On the time complexity, the amount of extra computation

comes from generating the combinatory weight W from WS

and the multiplicative/bias terms WML and WBL. Fortunately,

this overhead coming from element-wise multiplication and ad-

dition is rather small compared to the matrix multiplication.

More importantly, it is possible to utilize the optimized imple-

mentation of the original network2 which minimizes the com-

putational requirements of our approach.

On the same subject, [15] proved that W does not have to be

explicitly computed, but their approach required to rewrite the

graph operation for the core networks in popular deep learning

frameworks.

3. Related works and Comparison

In the world of speech recognition, training a single recognizer

for multiple languages is not a thematic stranger [3] from Hid-

den Markov Model (HMM) based models [17, 18], hybrid mod-

els [19] to end-to-end neural based models with CTC [20, 21]

or sequence-to-sequence models [22, 5, 23, 24, 25, 26], with

the last approach being inspired by the success of multilingual

machine translation [1, 2]. The literature especially mentions

the merits of disclosing the language identity (when the utter-

ance is supposed to belong to a single language) to the model,

whose architecture is designed to incorporate the language in-

formation.

One of the manifestations is language gating from either

language embeddings [21] or language codes [20, 27] that aim

at selecting a subset of the neurons in the network hidden layer.

In our current approach, this effect can be achieved by factoriz-

ing further Equation 15 [15]:

Y = (WS ·WML)
⊤
X +W

⊤

BLX (17)

= (WS · (rms
⊤

m)⊤X + (ras
⊤

a)
⊤
X (18)

= (W⊤

S (X · sm) · rm) + (ras
⊤

a)
⊤
X (19)

In Equation 17, the multiplicative matrix WML is factor-

ized by two vectors rm and sm. The left hand size of Equa-

tion 19 shows us that the those vectors can be learned to gate

the input vector X and the output of the linear projection

2such as the CUDA implementations of LSTM and Self-Attention

Page 24 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

(W⊤

S (X · sm). This intuition also suggested us to initial-

ize rm and sm to one-vectors similarly to normalization tech-

niques [28, 29]. Since layer normalization often comes before

the linear projection layers in Transformers, this scheme also

helps our model to generalize to assigning to each language a

different normalization scale and variance [30].

On the other hand, the right hand side of Equation 19 gives

us the bias to the linear projection which has been used in either

language embeddings [31] and customized attention layers with

language biases [5].

A different line of research involves using language

code [20] to differentiate language coming from a separate clas-

sifier. The language code is often trained separately and then

mixed into the ASR architecture later [27] giving the lingual

bias. Our method can provide a similar effect with end-to-end

training and without architectural modification. The advantage

of this method is to exploit unlabeled (transcript-wise) data to

gather language-specific information.

Architecture wise, [7] makes the network language aware

using language-dependently adaptive feed-forward layers at the

end of each Transformer block. While this method is able to

be effective in translation [32] and speech recognition scenar-

ios [5], it requires a considerable amount of parameters per lan-

guage3 and probably becomes incompatible with future archi-

tectures because it is specifically designed for Transformers.

The closest to our work is the parameter generator [4] that

composes a weight matrix W ∈ RDin×Dout using a shared ten-

sor WS ∈ RDin×Dout×DL and a language embedding vector

L ∈ RDL . The main disadvantage with that approach is that the

amount of parameters linearly scales in the size of the language

embedding DL, and the whole body of parameters participates

in every language. Our initial experiments cannot produce a

reasonable result for a straight comparison, partly because the

memory is quickly overwhelmed by the number of parameters.

For a larger context, weight factorization has been investi-

gated to generate distinguishable yet cheaper copies of an exist-

ing network to allow for economical ensembles [15], Bayesian

networks [33] or continual learning without catastrophe forget-

ting [16]. Similar ideas to use different weights for different

languages have been investigated early on by [34].

4. Experiments

4.1. Datasets

The effects of the weight factorization methods are mea-

sured on datasets publicly available including Mozilla Com-

mon Voice [35] containing up to 27 languages, Euronews [36]

and Europarl-ST [37] having 4 and 9 languages respectively.

The preprocessing steps include converting audio into 40-

dimensional feature frames, and generating BPE for each lan-

guage with 256 codes each. Only Japanese and Chinese are

handled at character level4. All of the three mentioned datasets

come with the predefined validation and test partition, which

are used in our experiments.

Two experimental scenarios are investigated in our work:

initially we work on a set of 7 European languages: German

(de), Italian (it), Spanish (es), Dutch (nl), French (fr), Polish

(pl) and Portuguese (pt) each of which contain at least 60 hours

3Each feed-forward component accounts for around 25% the
amount of parameters of each encoder block.

4Our initial experiments with joined BPE gave worse results for the
27-language dataset

of training data. The second scenario later expands to a total of

27 languages of more origin and diversity.

4.2. Model and Training description

The experiments are conducted with two model architectures,

two of which are commonly used in end-to-end speech recog-

nition [38]: a) LSTM-based encoder-decoder networks [39] in

which the LSTMs have 1024 hidden units and the encoder is

downsampled using two 3 × 3-filter convolutional layers, and

b) Transformer networks [6] with relative attention [40] with

weight factorization for this multilingual setup. For the Trans-

former, we use the Transformer-Big configurations in [6] with

model size 1024 but with 16 encoder layers with stochastic

layer dropout with the same setting as in [12].

All models are trained on single GPU by grouping a maxi-

mum 45, 000 frames per mini-batch5, and the gradients are up-

dated every 16 mini-batches with adaptive scheduling in [6] us-

ing the base learning rate 1.5 and 4, 096 warm-up steps. The in-

puts are masked with SpecAugmentation [39]. Given the large

configuration, we train all models up to 150, 000 updates or

up to 2 weeks. It is notable that the factorized versions have

minimal overhead which results in a 10 percent training speed

reduction, while the adapter method requires at least 33% more

time.

4.3. Baseline models

The comparison in the upcoming result section involves two

previous works that were re-implemented. First, the language

embedding was concatenated to the speech features and word

embeddings at the encoder and decoder respectively which was

used in [31]. Second, the language dependent adapters [7] were

used. In this case, we use adapters in the form of feed-forward

networks with 1, 024 neurons in the hidden layer. While theo-

retically the language embedding is a subset of our factorized

network because the former is essentially a small set of weights

dedicated for each language, the adapter network is fundamen-

tally different because it requires extra layers, adding depths

and nonlinearity levels to the overall architecture, while our

factorization scheme keeps the interaction between inputs and

weights unchanged.

4.4. Experiments with 7 languages

The word error rates for each language using two baseline mod-

els (with Transformer (TF) and LSTM), their factorized ver-

sions and the TF with adapter [7] are shown in Table 1. Aver-

aged over the 7 languages, the error rate is reduced by 15.5%
and 7.2% rel. for the Transformer and LSTM respectively,

and the improvement is significant across languages, unlike the

Adapter technique which manages to reduce the error rate for 4

languages but is not better for the other languages.

Regarding the number of parameters, the Transformer and

its factorized variation has twice as many parameters as the

LSTMs, thus possibly explaining the improvement regarding

performance. While this seems to contradicts the large number

of parameters for the ADT model that needs 42% more space

than the factorized TF, the ADT actually adds more depth (2

per TF block). This is a significant change to the architecture

because with layer normalization, all languages share the same

layer mean and variance at each level, while this is not changed

with the adapter.

5speech inputs are often longer than their transcriptions, so grouping
mini-batches by frames is more efficient

Page 25 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

4.5. Experiments with 27 languages

Under this condition, the factorization method maintains the im-

provement across all languages, with overall 26% rel. WER re-

duction in average for Transformer and 27.2% rel. for LSTM,

as summarized in Table 2. Importantly, the factorized models

are effective while using only 15% more parameters, while the

ADT Transformer needs almost 1 billion parameters to achieve

a 21.2% rel. improvement, due to each language requiring 2
more layers per block.

While the most resourceful languages such as German, Ital-

ian, Spanish and French observe the similar improvement com-

pared to the 7-language experiment, the lower resource coun-

terparts are often improved significantly compared to the base-

line, regardless of the model architecture. The error rates on

Japanese and Latvian testsets were decreased by 48% rel. com-

pared to the base Transformer, and multiple languages were

improved by 30% rel. including Arabic, Br, Cnh, Cv and Ta.

The only language that remains a relative high error rate is

Dhivehi, in this case staying over 60% regardless of the archi-

tecture. One explanation for the large improvements regarding

lower resource languages is that, the language weights are only

learned to optimize for those particular languages, while the

shared weights are frequently changed attempting to optimize

all different language/task losses. This problem is often alle-

viated using learnable and weighted sampling [41] to help the

gradients remain stable for the less frequently visited languages.

A direct comparison between two Transformer variations

shows that the factorization is consistently better in 21 lan-

guages and the adapters yielded better results in 6, given the

same time and computational constraints. While it is also pos-

sible for the adapters to obtain better performances by longer

training, the presented results provide evidences that our pro-

posed factorization scheme is able to outperform both the base-

line and the deeper language adapter network without extensive

tuning and with reasonable resources.

Table 1: Comparison on the 7-language dataset (WER↓). Our

baseline models include the Transformers (TF), LSTM and their

factorized (FTR) variations respectively. The last column is the

Transformer with Adapter (ADT) [7].

Language TF +FTR LSTM +FTR ADT

Params 335M 350M 167M 172M 497M

de 15.78 14.62 15.75 15.53 14.71

es 16.06 13.47 14.66 14.09 14.81

fr 17.34 16.26 17.35 16.44 16.76

it 18.62 15.82 16.65 15.63 17.58

nl 26.61 22.33 24.18 22.57 31.84

pl 20.4 15.7 16.39 15.28 20.65

pt 25.8 19.3 23.21 19.49 25.19

Mean 20.08 16.97 18.31 17.00 20.2

5. Conclusion

In this work, we proposed a method to decompose and factorize

weights enabling multilingual end-to-end ASR models to learn

more efficiently. While the main results are promising and the

method can be applied to arbitrary neural architectures, we are

also aware that method requires the utterance to contain a single

language and thus is limited to such scenarios. Future work will

Table 2: Comparison on the 27-language dataset. The models

being shown include Transformers (TF), LSTM (TF) and their

factorized versions (FTR). WER↓ .

Language TF +FTR LSTM +FTR ADT

Params 355M 416M 177M 194M 980M

(ar) 26.2 17.81 28.73 20.02 16.56

(br) 51.85 34.69 71.53 40.49 40.21

(cnh) 52 38.33 62.19 36.59 55.18

(cv) 53.88 33.11 61.61 39.6 38.40

(de) 16.89 15.62 19.89 16.59 16.35

(dv) 71.63 63.72 80.18 64.82 65.23

(es) 16.05 14.53 18.41 14.82 15.27

(et) 33.95 30.43 39.63 34.26 28.12

(fr) 18.61 17.24 20.86 17.43 17.87

(ia) 49.86 33.24 48.39 31.96 42.40

(id) 28.78 17.28 32.9 20.22 22.79

(it) 20.76 18 21.99 18.07 19.60

(ja) 39.17 20.44 38.92 23.79 27.55

(lv) 66.17 34.3 66.66 37.93 43.57

(ky) 22.08 17.17 18.68 21.46 12.86

(mn) 42.03 35.03 46.42 38.5 34.12

(nl) 27.54 23.75 29.44 23.93 28.30

(pl) 21.81 17.8 19.92 17.19 18.75

(pt) 25.16 21.38 27.13 21.37 22.82

(ro) 39.39 32.15 34.7 26.73 41.71

(sah) 57.47 50.47 69.04 49.2 55.27

(sl) 49.73 22.01 48.92 29.66 20.77

(ta) 33.1 22.34 18.87 28 16.36

(tr) 6.04 5.16 4.99 8.29 2.40

(tt) 24.96 22.12 38.03 24.07 21.83

(zh) 24.05 22.53 33.01 23.54 25.99

Mean 35.4 26.2 38.5 28.0 27.78

investigate the usage in a code-mixing scenario and incorporat-

ing unlabeled data for language-specific feature learning.

6. Acknowledgements

We thank Jan Niehues for suggesting the similarity between the

multiplicative weights and layer normalization.

Parts of this work were realized within the project ELITR

which has received funding from the European Unions Horizon

2020 Research and Innovation Programme under grant agree-

ment No 825460.

Parts of this work were realized within a project funded

by the Federal Ministry of Education and Research (BMBF) of

Germany under the number 01IS18040A.

7. References

[1] T.-L. Ha, J. Niehues, and A. Waibel, “Toward multilingual neural
machine translation with universal encoder and decoder,” arXiv

preprint arXiv:1611.04798, 2016.

[2] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen,
N. Thorat, F. Viégas, M. Wattenberg, G. Corrado et al., “Google’s
multilingual neural machine translation system: Enabling zero-
shot translation,” Transactions of the Association for Computa-

tional Linguistics, vol. 5, pp. 339–351, 2017.

[3] A. Waibel, H. Soltau, T. Schultz, T. Schaaf, and F. Metze, Multi-

lingual Speech Recognition. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000.

Page 26 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

[4] E. A. Platanios, M. Sachan, G. Neubig, and T. Mitchell, “Con-
textual parameter generation for universal neural machine transla-
tion,” in Proceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing, Brussels, Belgium, 2018.

[5] Y. Zhu, P. Haghani, A. Tripathi, B. Ramabhadran, B. Farris,
H. Xu, H. Lu, H. Sak, I. Leal, N. Gaur, P. J. Moreno, and
Q. Zhang, “Multilingual Speech Recognition with Self-Attention
Structured Parameterization,” in Interspeech, 2020.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, 2017.

[7] A. Bapna, N. Arivazhagan, and O. Firat, “Simple, scal-
able adaptation for neural machine translation,” arXiv preprint

arXiv:1909.08478, 2019.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” arXiv preprint, 2014.

[9] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2016.

[10] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proceedings of

the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017.

[11] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional net-
works for end-to-end speech recognition,” in 2017 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2017, pp. 4845–4849.

[12] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Müller, and A. Waibel,
“Very Deep Self-Attention Networks for End-to-End Speech
Recognition,” in Proc. Interspeech 2019, 2019, pp. 66–70.

[13] O. Firat, K. Cho, and Y. Bengio, “Multi-way, multilingual neural
machine translation with a shared attention mechanism,” arXiv

preprint arXiv:1601.01073, 2016.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Y. Wen, D. Tran, and J. Ba, “Batchensemble: an alternative
approach to efficient ensemble and lifelong learning,” arXiv

preprint, 2020.

[16] J. Yoon, S. Kim, E. Yang, and S. J. Hwang, “Scalable and order-
robust continual learning with additive parameter decomposition,”
arXiv preprint arXiv:1902.09432, 2019.

[17] L. Burget, P. Schwarz, M. Agarwal, P. Akyazi, K. Feng,
A. Ghoshal, O. Glembek, N. Goel, M. Karafiát, D. Povey et al.,
“Multilingual acoustic modeling for speech recognition based on
subspace gaussian mixture models,” in ICASSP, 2010.

[18] H. Lin, L. Deng, D. Yu, Y.-f. Gong, A. Acero, and C.-H. Lee, “A
study on multilingual acoustic modeling for large vocabulary asr,”
in 2009 IEEE International Conference on Acoustics, Speech and

Signal Processing. IEEE, 2009, pp. 4333–4336.

[19] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,
M. Devin, and J. Dean, “Multilingual acoustic models using dis-
tributed deep neural networks,” in ICASSP, 2013.

[20] M. Müller, S. Stüker, and A. Waibel, “Neural language codes for
multilingual acoustic models,” arXiv preprint, 2018.

[21] S. Kim and M. L. Seltzer, “Towards language-universal end-to-
end speech recognition,” in ICASSP, 2018.

[22] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno, E. We-
instein, and K. Rao, “Multilingual speech recognition with a sin-
gle end-to-end model,” in ICASSP, 2018.

[23] S. Zhou, S. Xu, and B. Xu, “Multilingual end-to-end speech
recognition with a single transformer on low-resource languages,”
arXiv preprint arXiv:1806.05059, 2018.

[24] O. Adams, M. Wiesner, S. Watanabe, and D. Yarowsky, “Mas-
sively multilingual adversarial speech recognition,” in Proceed-

ings of the Conference of the NAACL: Human Language Tech-

nologies, 2019.

[25] A. Kannan, A. Datta, T. N. Sainath, E. Weinstein, B. Ramabhad-
ran, Y. Wu, A. Bapna, Z. Chen, and S. Lee, “Large-scale multi-
lingual speech recognition with a streaming end-to-end model,”
arXiv preprint arXiv:1909.05330, 2019.

[26] B. Li, Y. Zhang, T. Sainath, Y. Wu, and W. Chan, “Bytes are all
you need: End-to-end multilingual speech recognition and syn-
thesis with bytes,” in ICASSP, 2019.

[27] M. Müller, S. Stüker, and A. Waibel, “Neural codes to factor lan-
guage in multilingual speech recognition,” in ICASSP, 2019.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv

preprint arXiv:1502.03167, 2015.

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[30] B. Zhang, P. Williams, I. Titov, and R. Sennrich, “Improving mas-
sively multilingual neural machine translation and zero-shot trans-
lation,” in Proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics, Jul. 2020.

[31] V. Pratap, A. Sriram, P. Tomasello, A. Hannun, V. Liptchinsky,
G. Synnaeve, and R. Collobert, “Massively multilingual asr: 50
languages, 1 model, 1 billion parameters,” arXiv, 2020.

[32] J. Philip, A. Berard, M. Gallé, and L. Besacier, “Language
adapters for zero shot neural machine translation,” in Proceedings

of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), 2020, pp. 4465–4470.

[33] M. Dusenberry, G. Jerfel, Y. Wen, Y. Ma, J. Snoek, K. Heller,
B. Lakshminarayanan, and D. Tran, “Efficient and scalable
bayesian neural nets with rank-1 factors,” in International con-

ference on machine learning. PMLR, 2020, pp. 2782–2792.

[34] J. B. Hampshire II and A. Waibel, “The meta-pi network: Build-
ing distributed knowledge representations for robust multisource
pattern recognition,” IEEE Computer Architecture Letters, vol. 14,
no. 07, pp. 751–769, 1992.

[35] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” arXiv

preprint arXiv:1912.06670, 2019.

[36] R. Gretter, “Euronews: a multilingual speech corpus for asr.” in
LREC, 2014, pp. 2635–2638.

[37] J. Iranzo-Sánchez, J. A. Silvestre-Cerdà, J. Jorge, N. Roselló,
A. Giménez, A. Sanchis, J. Civera, and A. Juan, “Europarl-st:
A multilingual corpus for speech translation of parliamentary de-
bates,” in ICASSP, 2020.

[38] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A com-
parison of transformer and lstm encoder decoder models for asr,”
in 2019 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU). IEEE, 2019, pp. 8–15.

[39] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv, 2019.

[40] N.-Q. Pham, T.-L. Ha, T.-N. Nguyen, T.-S. Nguyen, E. Salesky,
S. Stüker, J. Niehues, and A. Waibel, “Relative Positional
Encoding for Speech Recognition and Direct Translation,” in
Proc. Interspeech 2020, 2020, pp. 31–35. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2020-2526

[41] X. Wang, Y. Tsvetkov, and G. Neubig, “Balancing training for
multilingual neural machine translation,” in Proceedings of the

58th Annual Meeting of the Association for Computational Lin-

guistics, 2020.

Page 27 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

E Short-Term Word-Learning in a Dynamically Changing Environ-
ment

Short-Term Word-Learning in a Dynamically Changing Environment

Christian Huber1, Rishu Kumar2, Ondřej Bojar2 and Alexander Waibel1,3

1Interactive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics, Prague, Czech Republic
3Carnegie Mellon University, Pittsburgh PA, USA

christian.huber@kit.edu, lastname@ufal.mff.cuni.cz, alexander.waibel@cmu.edu

Abstract
Neural sequence-to-sequence automatic speech recognition
(ASR) systems are in principle open vocabulary systems, when
using appropriate modeling units. In practice, however, they of-
ten fail to recognize words not seen during training, e.g., named
entities, numbers or technical terms. To alleviate this problem,
[1] proposed to supplement an end-to-end ASR system with
a word/phrase memory and a mechanism to access this mem-
ory to recognize the words and phrases correctly. In this paper
we study, a) methods to acquire important words for this mem-
ory dynamically and, b) the trade-off between improvement in
recognition accuracy of new words and the potential danger of
false alarms for those added words. We demonstrate significant
improvements in the detection rate of new words with only a
minor increase in false alarms (F1 score 0.30 → 0.80), when
using an appropriate number of new words. In addition, we
show that important keywords can be extracted from supporting
documents and used effectively.
Index Terms: speech recognition, one-shot learning, new-word
learning

1. Introduction
Neural sequence-to-sequence systems deliver state-of-the-art
performance for automatic speech recognition (ASR). When us-
ing appropriate modeling units, e.g., byte-pair encoded charac-
ters, these systems are in principle open vocabulary systems.
In practice, however, they often fail to recognize words not
seen during training, e.g., named entities, numbers or technical
terms.

To alleviate this problem, [1] proposed to supplement an
end-to-end ASR system with a word/phrase memory and a
mechanism to access this memory to recognize the words and
phrases correctly. After the training of the ASR system, and
when it has already been deployed, a relevant word can be added
or subtracted instantly without the need for further training.

This is achieved by, a) a memory-attention layer which pre-
dicts the availability and location of relevant information in the
memory, and b) a memory-entry-attention layer which extracts
the information of a memory entry.

In this paper we study, a) methods to acquire specialized
words for this memory and, b) the trade-off between improve-
ment in recognition accuracy of new words and the potential
danger of false alarms for those added words. Therefore, we
extensively evaluate this system in an online low-latency setup.

The ASR model described above outputs uncased text with-
out punctuation. Therefore, we run a casing and punctuation
model afterwards which reconstructs the casing of each word
and inserts the punctuation. This model consists of a trans-
former encoder [2, 3] which is run after the beam-search and

outputs for each word if the word should be uppercased and if
any punctuation should be emitted after the word or not.

To use the model in an online low-latency setup [4], we do
the following: The model waits for a chunk of acoustic frames
with at least a predetermined duration to arrive. Then beam
search is run with this input chunk. The beams (called unstable
hypotheses) are then given to a stability detection component
which returns a stable hypothesis, e.g. the common prefix of all
hypotheses. After that, the part of audio corresponding to the
stable hypothesis is cut out (via an alignment) and the model
waits for more audio frames.

2. Experiments and Results
We extended the model proposed in [1] with the ability to cor-
rectly do the casing of the new words supplied through the new
words list. This is done by adapting the casing and punctua-
tion model by using internals of the ASR model, namely the
attention over the memory entries. For each word the beam-
search has outputted, all the predicted memory entries (from
the memory-attention layers) are compared with the word. If
there is a match, the casing from the new words list is taken.
Therefore, whenever a new word is recognized by the model,
the correct casing from the new words list is outputted.

Furthermore, we evaluate the system in two different sce-
narios: First, when an operator adds new words to the system,
and second, when new words are extracted from other sources,
e.g. slides.

2.1. Data

For the first scenario, we use eight talks from the ELITR testset
[5] with a total length of 3.7 hours. For the second scenario, we
use ten talks from the EMNLP 2020 conference1 with a total
length of 1.6 hours. Along with the EMNLP talks, the papers
and the slides of the talks are available. The text from the pa-
pers (excluding the references) is extracted with pdftotext2, the
text from the slides is extracted with Tesseract3, since we only
had access to screenshots of the slides. We also cleaned the
transcripts of all talks from typos, so that they could serve as a
reliable reference.

2.2. Extraction of the New Words List

We tried different methods to extract a list of new words from
the document, and we ended up taking all the words of the doc-
ument which are not in the training data of the ASR model.

1https://2020.emnlp.org
2https://en.wikipedia.org/wiki/Pdftotext
3https://github.com/tesseract-ocr/tesseract

Page 28 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

20

30

40

50

60

70

80

R
ec
al
l
(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

5

10

15

20

25

30

m
W
E
R
(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

20

30

40

50

60

70

80

90

P
re
ci
si
on

(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

0.3

0.4

0.5

0.6

0.7

0.8

F
1
sc
or
e

Figure 1: Recall and precision for the evaluation of the memory
ASR-worker on the ELITR testset.

This method is simple and performed well when looking at the
output words4. For example in the talk rehm long,5 we have
extracted the following list of new words: pipelining, Friem,
iAnnotate, MQM, LSPs, eServices, semantification, Aljoscha,
Cortana, workflows, DFKI, annotating, NLP.

With this method, we extracted 134 terms from the ELITR
testset reference transcripts, 148 from the EMNLP testset refer-
ence transcripts, 865 from the EMNLP papers and 584 from the
EMNLP slides. Note that, in contrast to the new-words testset
in [1], the list of new words is created automatically and might
differ from a list of new or rare words a human might select.

2.3. Evaluation with the Help of an Operator

In this scenario, we evaluate the system, when the list of new
words is extracted from the reference transcript (Oracle). This
simulates an operator introducing new misrecognized words in
the memory. We use eight talks of the ELITR testset for the
evaluation.

4Furthermore this method is very effective in finding errors in the
transcript.

5https://github.com/ELITR/elitr-testset/tree/
master/documents/rehm-language-technologies

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

20

30

40

50

60

70

80
R
ec
al
l
(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

5

10

15

20

25

30

m
W
E
R
(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

20

30

40

50

60

70

80

90

P
re
ci
si
on

(i
n
%
)

Empty Oracle ext.
af. occ.

Oracle ext. Oracle ext.
be. occ.

Approach

0.3

0.4

0.5

0.6

0.7

0.8
F
1
sc
or
e

Figure 2: mWER and F1-score for the evaluation of the memory
ASR-worker on the ELITR testset.

Dependent on the approach used (x axis in Figures 1 and 2),
either an empty list of new words (Empty), i.e. the baseline, or
the full list of new words (Oracle) is used. For the approaches “*
af. occ.” and “* be. occ.”, a new word is added to the list of new
words after the first occurrence or before the first occurrence of
that word, respectively. These two approaches simulate an op-
erator correcting the output and either the corrected segment is
reevaluated or not. The first condition reflects the case when
the operator can quickly react to errors but cannot fix them once
the segment has been shipped, the second condition represents
the situation when either the shipping is delayed a little to give
the operator a chance to introduce the correction, or when the
overall system setup allows updating previous outputs. The sec-
ond situation is common e.g. in re-translating systems such as
ELITR [6].

Furthermore, we noticed, that sometimes false positives oc-
curred, i.e. a word in the new words list is confused with a
common word and outputted even though it is not in the au-
dio and the reference transcript at that point. In the approaches
marked with “* ext. *”, we therefore extended the list of new
words and added these common words also to the new words
list. This should help the model to distinguish between the
common word and the new word. These approaches simulate

Page 29 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

10

20

30

40

50

60

70

R
ec
al
l
(i
n
%
)

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

5

10

15

20

25

30

m
W
E
R
(i
n
%
)

EmptyOracle
af. occ.

OracleOracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

20

30

40

50

60

70

80

90

100

P
re
ci
si
on

(i
n
%
)

evaluated on all new words
from transcript

evaluated on new word
from transcript intersected source

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

0.1

0.2

0.3

0.4

0.5

0.6

0.7
F
1
sc
or
e

evaluated on all new words
from transcript

evaluated on new word
from transcript intersected source

Figure 3: Recall and precision for the evaluation of the memory
ASR-worker on the EMNLP testset.

an operator adding common words to the memory when a false
positive is observed.

The mWER segmenter [7] is used to align the output seg-
ments with the reference segments. In Figures 1 and 2, we can
see the results. The recall, precision and F1 score is measured
on the new words. The baseline model with empty memory
performs poorly. For the other approaches, we see that it cer-
tainly helps to add the new word before the occurrence. The
approaches with extended memory list produce substantially
fewer false positives with the approach “Oracle ext. be. occ.”
reaching an F1 score of 0.80 ± 0.02. Furthermore, we see that
all approaches have similar word error rates (mWER) suggest-
ing that the word error rate is not an appropriate measure for
evaluating if important words are correctly recognized. Note
that the talks are challenging and the transcript is not very clean
and therefore the word error rates are relatively high.

We noticed that the performance of the ASR worker when
used in online low-latency mode is not deterministic. This hap-
pens because the packets of audio are sent over the network
and they can, dependent on the network latency, arrive earlier
or later. Therefore, when the predetermined duration of audio
is reached, the model can start processing a slightly smaller or
longer audio input sequence. Thus, as described above, the sta-
ble hypothesis found by the stability detection is not determinis-
tic and therefore the same holds true for the ASR output. There-
fore, we report mean and standard deviation performance over
16 runs as shown in Figures 1 and 2.

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

10

20

30

40

50

60

70

R
ec
al
l
(i
n
%
)

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

5

10

15

20

25

30

m
W
E
R
(i
n
%
)

EmptyOracle
af. occ.

OracleOracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

20

30

40

50

60

70

80

90

100

P
re
ci
si
on

(i
n
%
)

evaluated on all new words
from transcript

evaluated on new word
from transcript intersected source

EmptyOracle
af. occ.

Oracle Oracle
be. occ.

Paper Curr.
slides

All
slides

Paper+
a.slides

Approach

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
sc
or
e

evaluated on all new words
from transcript

evaluated on new word
from transcript intersected source

Figure 4: mWER and F1-score for the evaluation of the memory
ASR-worker on the EMNLP testset.

2.4. Evaluation with Additional Sources

In this scenario, we evaluate the system when the list of new
words is extracted from additional sources. We conducted ex-
periments on ten talks from the EMNLP 2020 conference. The
list of new words was extracted from the paper or the slides
(with optical character recognition), respectively, with the same
method described above. For the approach “Curr. slides”, the
new words list was extracted from the previous, current and the
upcoming slide.

In Figures 3 and 4, we see similar results for the approaches
that were already evaluated on the ELITR testset (e.g. F1 scores
of 0.66± 0.01 vs. 0.65± 0.02 for the oracle approaches). For
the approaches “Paper” and “* slides”, we evaluate the perfor-
mance on all the new words of the transcript and on the new
words of the transcript intersected with the new words from the
source. We differentiate between these two evaluation methods
to show the effect of the new uttered word being actually avail-
able in the source or not. The performance on the new words
of the approach “Paper” is not much worse than the oracle ap-
proach (F1 scores of 0.66 ± 0.01 vs. 0.56 ± 0.01), especially
when considering the evaluation only of new words present in
the paper (0.63±0.01), compared to an F1 score of 0.09±0.00
for the approach “Empty”.

The performance when extracting the new words list from
the slides is worse when evaluating on all new words from the
transcript, possibly due to the used optical character recogni-

Page 30 of 31

European Live Translator
D2.2: Report 2 on ASR Systems

0 2000 4000 6000 8000
Memory size

0

5

10

15

20

25

30

W
E
R
(i
n
%
)

Figure 5: Evaluation of the memory ASR-worker on the tedlium
testset with a large number of random words from the training
dataset in the memory.

tion. When evaluating only on new words present in the slides,
the performance is better than the corresponding approach of
extracting the new words from the paper. Combining the new
words from the paper and the slides did not yield improvements.
The word error rate (mWER) stays almost the same for all ap-
proaches, however one can see that for the approaches with
many words in the memory, the word error rate is a bit higher.
We investigate this phenomenon further in section 2.5.

2.5. Additional Experiments

We investigated the usage of a large memory and took a certain
number of random words from the training dataset as memory.
Then we decoded the tedlium testset [8]. The results can be
seen in Figure 5: a huge number of words in the memory result
in a drastically worse word error rate. This happens since a lot
of false positives are occurring. Therefore, our approach is best
used with a small number of new words the model should focus
on.

As the final experiment, we examined the situation when a
new word in the memory is not found (by the memory-attention
layers). This can happen if the pronunciation of the word dif-
fers considerable from the “common pronunciation” as learned
by the general model. To help the model recognize the new
word anyway, we propose not to search for the new word but
for the word the model outputs instead. So for example if we
want to recognize “his name is ron weasly” but the model would
output “his name is ron weesley” even if the word “weasly” is
in the memory, we would use the confused form “weesley” in
the memory-attention layer which searches through the memory
and eventually use “weasly” for memory-entry-attention layer
which extracts information from from the memory.

Note that in this case, the scenario for the practical use is
severely different. Instead of the information that a novel word
will probably occur somewhere in the transcript, one now needs
to have the information that at a specific point a word is wrong
and another word is correct at that location.

We went through the false negatives of the new words test-
set from [1] and applied this approach. As a result, we obtained

that the accuracy on the new words testset increased from 90.4%
to 94.1%.

3. Conclusion
We demonstrated an efficient method of acquiring a new words
list given a source such as supplementary paper or slides and
evaluated the trade-off between improving the recognition ac-
curacy of new words and the occurrence of too many false pos-
itives in an online low-latency environment. We documented
that standard WER does not reflect the success of recognition
of these typically very important words. We obtained an F1
score of up to 0.80 evaluated on the recognition of new words.

4. Acknowledgements
We want to thank SlidesLive,6 who provided us with the tran-
scripts of the EMNLP talks.

The projects on which this paper is based were funded
by the European Union under grant agreement No 825460
(ELITR), the Federal Ministry of Education and Research
(BMBF) of Germany under the numbers 01IS18040A (OML)
and 01EF1803B (RELATER) and the Czech Science Founda-
tion under the grant 19-26934X (NEUREM3).

5. References
[1] C. Huber, J. Hussain, S. Stüker, and A. Waibel, “Instant one-shot

word-learning for context-specific neural sequence-to-sequence
speech recognition,” arXiv preprint arXiv:2107.02268, 2021.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[3] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Müller, and A. Waibel,
“Very deep self-attention networks for end-to-end speech recogni-
tion,” Proc. Interspeech 2019, pp. 66–70, 2019.

[4] T.-S. Nguyen, S. Stueker, and A. Waibel, “Super-human perfor-
mance in online low-latency recognition of conversational speech,”
2021.

[5] E. Ansari, O. Bojar, B. Haddow, and M. Mahmoudi, “SLTev: Com-
prehensive Evaluation of Spoken Language Translation,” in Proc.
of EACL Demo Papers. Kyiv, Ukraine: ACL, 2021.

[6] O. Bojar, D. Macháček, S. Sagar, O. Smrž, J. Kratochvı́l, P. Polák,
E. Ansari, M. Mahmoudi, R. Kumar, D. Franceschini, C. Canton,
I. Simonini, T.-S. Nguyen, F. Schneider, S. Stüker, A. Waibel,
B. Haddow, R. Sennrich, and P. Williams, “ELITR multilingual
live subtitling: Demo and strategy,” in Proc. of EACL System
Demonstrations. ACL, 2021, pp. 271–277. [Online]. Available:
https://aclanthology.org/2021.eacl-demos.32

[7] E. Matusov, G. Leusch, O. Bender, and H. Ney, “Evaluating ma-
chine translation output with automatic sentence segmentation,” in
Proceedings of the Second International Workshop on Spoken Lan-
guage Translation, 2005.

[8] F. Hernandez, V. Nguyen, S. Ghannay, N. Tomashenko, and
Y. Estève, “Ted-lium 3: twice as much data and corpus repartition
for experiments on speaker adaptation,” in International Confer-
ence on Speech and Computer. Springer, 2018, pp. 198–208.

6https://library.slideslive.com/

Page 31 of 31

	Executive Summary
	Types of systems investigated
	Super-human performance speech recognition
	Multilingual end-to-end Sequence-to-sequence ASR
	Domain Adaptation / New Word Adaptation

	Conclusion
	References
	Appendices
	Appendix High Performance Sequence-to-Sequence Model for Streaming Speech Recognition from Interspeech 2020
	Appendix Super-Human Performance in Online Low-latency Recognition of Conversational Speech
	Appendix KIT’s IWSLT 2021 Offline Speech Translation System
	Appendix Efficient Weight factorization for Multilingual Speech Recognition
	Appendix Short-Term Word-Learning in a Dynamically Changing Environment

