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1 Executive Summary
In this deliverable we describe our work on spoken language translation (SLT) in the second half
of the project. SLT is a special form of machine translation (MT) which is designed to cope with
spoken language. There are two paradigms for SLT – cascade systems where automatic speech
recognition (ASR) first produces a transcription in the source language, then another system
translates it to the target language; and end-to-end systems where the source speech is directly
translated into the target language, without an intermediate transcription. Our research has
been directed at improving both paradigms, although the production system in ELITR uses the
cascade approach, a more mature technology.

A major consideration for the ELITR use-case is that SLT should be online or simultaneous,
in other words the translation should be made available to the user as soon as possible, without
excessive latency. This requires trade-offs in system design, because if the system produces
translations too quickly, they may be of poor quality because the model does not have sufficient
information to translate, or the system may need to update already-written translations, causing
distracting flicker.

Much of the work in this package has therefore been directed at improving online translation.
We have developed techniques that can use the source language to predict when to translate,
and when to wait for more input, and we have developed data manipulation techniques that
lead to more monotonic translation models, better suited to online SLT. In addition, we have
been working on the problem of online SLT for continuous inputs, since most MT/SLT models
are applied on a sentence-by-sentence basis. We have an approach to this problem based on
sliding windows, and another approach based on a modified neural architecture.

Given that our SLT systems are aiming to complement and extend the work of human
interpreters, another piece of work in this package has been using our recently developed corpus
of interpretation to compare different approaches to extending interpretation. The scenario we
have in mind is where there is a human simultaneous interpreter providing interpretation into
one language, but we would like to extend to other target languages using SLT. We provide a
comparison of applying SLT directly to the source, versus applying it to the human interpreter,
and show the trade-offs.

For end-to-end models, one of their touted advantages is that by forgoing an intermediate
source language transcription they can avoid committing too early and thereby propagating
errors along the pipeline. The question we ask is, does this help the models be more robust to
acoustic noise (as has been claimed in the literature). It turns out that a small advantage is
visible, but only at high levels of acoustic noise.

Our work on improving end-to-end models has focused on multilingual (including zero-shot)
modelling, and exploiting wider context. We find that we are able to improve performance
on the former by using architectural improvements and data augmentation. For the latter, we
are the first to show that extended context can be exploited successfully in end-to-end SLT
(previous models are all sentence-by-sentence). Our final piece of work examines the typical
training pipeline for end-to-end models and shows how it can be simplified.
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2 Introduction
This is the final report on the research of the spoken language translation (SLT) work package
(WP3). It presents the progress of the research in this work package since the previous report
(D3.1) was submitted in June 2020.

From the Grant Agreement, the aim of this work package is:

To ensure high-quality MT for spoken language input, which lags behind the quality
of text-to-text translation due to the noisy nature of ASR.

Viewing this from a system-building perspective, WP3 is about improving the connection be-
tween ASR (as developed in WP2) and MT (as developed in WP4).

In the project plan, the work of WP3 was split into three tasks reflecting different ways of
improving the ASR/MT interface. For the first two tasks we assume a “pipeline” (or “cascade”)
approach to SLT, where the discrete output of the ASR system is fed into the MT system. In
task T3.1 (ASR transcript normalization) we develop methods for post-processing the output
of the ASR so that it can be more accurately translated by a text-to-text MT system; whilst in
task T3.2. we aim to make the MT system more robust to translating the output from ASR,
especially when it contains errors. For task T3.3, we take a different approach, in that try to
model ASR and MT jointly – in an end-to-end SLT system.

Below we give a brief explanation of how our work fits with the three tasks in this WP, and
in the sections that follow we describe our progress in more detail. Since most of the work has
already been described in (published or submitted) research papers, we include a summary of
this work in the body of the deliverable, and add the full paper in an appendix.

T3.1: Normalization of ASR Normalisation of ASR output includes disfluency removal, punc-
tuation, segmentation and truecasing. For these steps we have developed specialised components
for our production system, and these were described in the interim report (D3.1). In this re-
port we describe our attempts to build an MT system that can work directly on raw ASR (i.e.
unpunctuated and uncased). The idea of this is to create a cascaded system that does not need
a segmentation component between ASR and MT. Besides simplifying the pipeline, we hoped
that this would be more robust to ASR segmentation errors (which can be very damaging to
MT), especially in the online translation setting. This work is described in Section 3.1.

The other piece of work that fits into this task is error detection for ASR. The idea here is
that if we can detect mis-transcriptions then we can take action either before they are passed
to MT, or within MT itself. This work is described in Section 3.2.

T3.2: Robust Neural Machine Translation with Noisy Input Early in the project we re-
alised that an important problem for the MT system was the fact that the transcriptions from
ASR were delivered incrementally, and could be rewritten as the ASR component updated its
hypotheses. To produce useful output for our use-case, it was essential that the translation was
also output to the user in a timely fashion, without an excessive delay. In other words, the
ELITR use-case required “online” or “simultaneous” SLT.

There are two basic approaches to simultaneous SLT: retranslation (Niehues et al., 2016,
2018) and streaming (Ma et al., 2019). In retranslation, the current segment is retranslated
each time there is an update from ASR, whereas a streaming approach maintains the model’s
hidden state and on each update it decides whether to extend the translation (write) or
wait for more input (read). Retranslation has the advantage of simplicity (it can work with
an unmodified MT system) but it will cause changes in already-written translation output,
leading to potentially annoying flicker for the users. Evaluation of retranslation thus requires
us to consider three factors: quality (how good is the translation), latency (how timely does
the translation appear), and flicker (how often translations are updated). In ELITR, we have
developed SLTev (Ansari et al., 2021), a comprehensive evaluation tool for simultaneous SLT,
which can measure all three factors, and is described in D1.6.
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In Section 4 we describe several pieces of research aimed at improving simultaneous SLT,
considering both streaming and retranslation approaches. In Section 4.1 we describe how re-
translation can be adapted for use in a streaming step, i.e. when correcting previous output
is disallowed. We then show in Section 4.2 that a self-training approach can be used to sta-
bilise retranslation (i.e. to reduce flicker). Focusing on streaming approaches, we first show
that adaptive computation time is an effective method and can be applied to unsegmented ASR
output (Section 4.3), and then we explore how reinforcement learning and imitation learning
can improve the streaming approach (Section 4.4).

Finally we consider the link between simultaneous SLT, as implemented by current systems,
and human simultaneous interpreting, based on our study of the interpreters in the European
Parliament (4.5).

T3.3: End-to-End Speech-to-Text Translation In the final task we consider end-to-end mod-
els for spoken language translation. We will present three research papers that have been
published or submitted: using end-to-end models for multilingual and zero-shot translation sce-
narios (Section 5.1); including inter-sentential context in end-to-end models (Section 5.3); and
an investigation into the necessity of ASR pre-training and rule-based feature extraction for
end-to-end models (Section 5.4). We also present some further analysis on the robustness of
end-to-end approaches to acoustic noise – preliminary results were presented at the first review,
although not included in D3.1.

3 Normalisation and Segmentation of ASR
3.1 Window-based Approach to SLT
In a cascaded approach to speech translation, the speech is first transcribed using an ASR sys-
tem, and then the transcription is translated by a text-to-text MT system. Before translating
the ASR generated transcription, we need to sentence-segment it automatically. If the segmen-
tation is not correct, the translation generated by the MT system may not be adequate. Also
the ASR generated transcriptions often have incorrect punctuation which becomes problematic
as MT systems are sensitive to noise. So we aim to build am SLT system where we do not
need to rely on an automatic segmenter and ASR generated punctuation. We build a system
that accepts raw ASR, i.e. lower-cased and unpunctuated, translating the text as a series of
sliding windows. To avoid a mismatch between test and training, we propose a window-based
training approach, where the training data is also converted to a sequence of sliding windows.
This approach removes the need for segmentation and other post-processing of the ASR output
before feeding to an MT system.

In our proposed window-based translation, we remove punctuation from the source text
and also lowercase to simulate the ASR-generated text. After the preprocessing, we align the
training data and convert it into a set of parallel windows. The windows are of 15-25 tokens
in length. Once we have generated the window pairs we train a transformer-based MT system.
At inference time, the ASR output is split into overlapping windows of fixed length. These
windows are translated into target windows. As the windows are not sentences, and their
translations overlap, we propose an algorithm to join the output windows back together into a
target language stream.

We experiment using English-German and English-Czech language pairs and evaluate on
the ESIC (Macháček et al., 2021) test set. We find that our proposed window-based approach
outperforms the baseline approach using an automatic segmenter.

See Appendix A for full details.

3.2 Error Detection in ASR
If we can detect errors in ASR, then we could alert users to potential errors when we display the
results of transcription/translation. We could also use this information to make the downstream
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MT more robust to ASE errors.
Using large pretrained language models for downstream tasks has recently become popular.

We were interested in whether it is possible to leverage such a model to identify errors in ASR
transcripts, i.e., predict a correct/incorrect label for each word in the ASR transcript. As a
pretrained language model, we use BERT (Devlin et al., 2018). The model is extended with
a linear layer on top of the hidden states for token label prediction. We leverage an English
speech recognition dataset Mozilla CommonVoice (Ardila et al., 2019). Using a pretrained ASR
model Conformer (Gulati et al., 2020), we transcribed the recordings from the dataset. Using
the word-level alignment of ASR and golden transcripts, we obtain correct/incorrect labels for
each word in the ASR transcript (i.e., correct if the aligned golden word matches the word
produced by ASR). We finetune the BERT extended with token classification head on the ASR
transcripts as inputs and correctness labels as targets.

The results show an F1 score of 0.91 with a precision of 0.94 and a recall of 0.87. We
identified two major drawbacks of the model. (1) Because the ASR error classifier does not
have access to the original recording, it judges the correctness only based on the context of the
utterance. (2) We found the classifier to have a problem with domain shift, e.g., identifying
direct speech within reported speech sentences as incorrect. The pretraining uses data in the
written domain, unlike the ASR transcripts that are from the speech domain.

In conclusion, the pretrained language models can be used for ASR error detection. How-
ever, the lack of the prior speech utterance for context, and pretraining domain shift lead to
suboptimal results.

4 Online Spoken Language Translation
4.1 Using a Retranslation Approach in a Streaming Setting: IWSLT 2021 Submis-

sion
In the IWSLT 2021 simultaneous spoken language translation task (Anastasopoulos et al., 2021),
the idea was to create systems that would produce the best possible translation at specified
latency settings. We took part in the text-to-text English→German track where participants
had to submit a dockerised model (or models) whose latency, as measured by Average Lagging
(Ma et al., 2019) on the development set was either ≤ 3 (low), ≤ 6 (medium) or ≤ 15 (high).
These models were then evaluated on a blind test set to provide quality measurements for each
of the latency categories. Note that the evaluation process only supported streaming systems,
so systems were not allowed to update translations after outputting them.

Our aim in building our submission (Sen et al., 2021) was to test how well a retranslation
system could be adapted to a streaming scenario. The advantage of this approach is simplicity,
although we do require some extra heuristics to ensure good quality. Since a retranslation system
produces a fresh translation of the source sentence prefix every time the source is extended, there
is a danger that translations of later prefixes are inconsistent with earlier ones that have already
been committed. The simplest way to address this problem is to mask the last k words of the
output on each update, reducing the likelihood of inconsistency, but this increases latency. In
our submission we tested two methods of improving over this masking baseline: setting the
mask dynamically by probing the translation of predicted extensions Yao and Haddow (2020);
and using a source language model to predict when “meaningful units” of source text were
completed. Both of these techniques produced gains (in terms of an improved quality-latency
tradeoff) over the fixed mask baseline. The full paper is included in Appendix B.

4.2 Reducing Flicker in Retranslation-based Simultaneous SLT Using Self-training
Flicker in retranslation systems can be related to differences in word order between source and
target languages, or simply by the system trying to make lexical decisions based on incomplete
knowledge, and then having to update. In some cases this non-monotonicity or indecision is
necessary, but we would ideally like to reduce it as much as possible, whilst maintaining quality.
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In other words, a system that prefers monotonic translations where possible, and tends to choose
a single best translation and stick to it, should have lower flicker.

In non-autoregressive translation a related problem is that of multimodality (Gu et al., 2018;
Zhou et al., 2020). This is when the system is forced to choose between two different translations,
of similar likelihood, resulting in an incoherent combination of the two. The solution in that case
is to use sequence-level knowledge distillation (Kim and Rush, 2016), which is approximated as
self-training. Using this inspiration, we applied self-training to the problem of restranslation-
based simultaneous SLT. This works by first translating the whole training corpus, selecting
the highest scoring translation in the beam for each source sentence, and creating a synthetic
corpus for another round of training. The resulting MT system has similar quality, but reduced
flicker for the equivalent latency (we use fixed masks to manipulate latency). The full paper is
included in Appendix C.

4.3 Translating Streams Using Adaptive Computation Time
In this work (Schneider and Waibel, 2020), we turn our attention to streaming-based simulta-
neous SLT, where the system needs a policy to decide when to read more input, and when to
extend the translated output. An ideal policy would offer an optimal tradeoff between quality
and latency. A fixed policy such as wait-k (Ma et al., 2019) is relatively straightforward but the
one-size-fits-all approach is not optimal, so researchers have investigated learned policies where
the attention mechanism is used to make the read/write decision, e.g. MILk (Arivazhagan et al.,
2019). However these attention-based learned systems suffer from numerical instability, and a
weakness of most previous work is that it assumes that the source text is already segmented.
As in Section 3.1, we would like to be able to run without a segmenter in order to simplify the
setup, and as a step towards end-to-end simultaneous SLT.

An alternative way to learn a read/write policy is to apply adaptive computation time (ACT;
Graves, 2016), and this can be extended to long sequences using the Transformer-XL (Dai
et al., 2019). The original ACT was applied to RNNs, and allowed the network to “ponder” the
input for several timesteps. We extended this to the case of an encoder-decoder, by allowing
the decoder to “ponder” the input from the encoder for zero or more steps. Using ACT in
combination with the Transformer-XL enables us to achieve a better quality-latency trade-off
than MILk, and to process long input sequences without a separate segmentation model. The
full paper is included in Appendix D.

4.4 Applying Reinforcement Learning to Simultaneous SLT
4.4.1 Introduction

Using reinforcement learning (RL) to learn adaptive policies for online text-to-text translation
has been shown to provide better trade-offs between latency and translation quality than various
fixed policy approaches (wait-if-worse and Oda et al.’s segmentation algorithm; Gu et al., 2017;
Alinejad et al., 2018). However, despite the positive results, little has been done to explore
RL’s potential for SLT further. Our work looks to bridge this gap by applying adaptive RL
policies to transformer models and evaluating their performance against state-of-the-art policies
for text-to-text SLT.

4.4.2 Model

We now outline our simultaneous MT system that uses an adaptive policy learned via RL. We
consider an RL agent operating in an environment, making decisions about specific actions. For
the purposes of training the RL model, the MT model is fixed.
Actions: READ/WRITE. In other words, the agent has to make sequential decisions between
two possible actions – either it can “read” more source, or it can “write” an update to the
translation.
Environment: The RL environment consists of three main parts. Firstly, the target and source
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sentences are updated based on the agent’s action. Next, the rewards are calculated, and finally,
the observation for the next timestep is generated from the MT model.

The environment receives one of two actions, READ or WRITE, per time step from the
agent. READ unveils the next word within the source sentence, while WRITE outputs the
current predicted target word to the target sentence. Rewards are calculated based on the
agent’s action. The rewards are designed to balance the translation quality against the latency
and can be tuned to optimise for one over the other to allow for more or less latency. We
perform the reward calculations according to Gu et al. (2017), that is, by summing the change
in bleu rQ with the latency rL at each time-step. We use a smoothed version of sentence bleu
to measure the quality of translations (Chen and Cherry, 2014), and for each time-step calculate
the change in bleu as the reward. Finally, once the target sentence is complete, we employ a
brevity penalty, BP , to penalise sentences that are too short compared to the reference.

rQt =

{
∆BLEU(Y, Y ∗, t) t < T
BP · BLEU(Y, Y ∗) t = T,

(1)

where Y is the current target output for time t, T is the target length, Y ∗ is either the refer-
ence sentence or offline translation depending on the experiment setup, and ∆BLEU(Y, Y ∗, t) =
BLEU(Y, Y ∗, t)− BLEU(Y, Y ∗, t− 1).

The latency is taken as the consecutive wait (CW) at each time-step, until the final time-step
where we also include the average proportion (AP) for the entire episode (Cho and Esipova,
2016) in a weighted sum with the CW.

rLt =

{
α[sgn(ct − c∗)] t < T

α[sgn(ct − c∗)] + β⌊d− d∗⌋+, t = T,
(2)

where α, β ≤ 0. ct is the CW for time-step t and d is the AP, calculated at the end of the
episode. c∗ and d∗ are the target latency values that can be adjusted to change how much
latency the model accepts. sgn is the sign function, required in order to keep the latency reward
within the same range as the bleu score ±1.

Finally, as shown in figure 1, the environment generates the next observation from the MT
model by concatenating the decoder’s self attention vector, cross attention vector and hidden
state with the next predicted target word embedding. Therefore, following every READ action
the MT model re-encodes the available source sentence passing it to the decoder and after every
WRITE action the MT model simply runs the decoder inputting the newly written target word
as the previously outputted token.

Agent: Receives the current observation, reward for the previous action and information
on whether the target sentence has been entirely written or not from the environment. Given
the observation, the agent then makes its next decision as to whether READ or WRITE. This
is achieved by passing the observation vector to a policy network. We ran experiments with
different policy networks and discuss these within the experiments section below. The weights
of the policy network are updated during training using the Advantage Actor-Critic (A2C)
algorithm (Mnih et al., 2016). The idea is to update the weights of the policy network in a
direction that increases the expected reward. The underlying theorem that enables this update
is called the policy gradient theorem (Sutton et al., 1999), we give the result below:

∇θJ(θ) = Eπθ
[∇θ logπθ(a | s)Qπθ(s, a)] (3)

where ∇J(θ) ∈ Rd′ is the gradient of an arbitrary scalar performance measure (i.e. the expecta-
tion of the reward) with respect to θ, πθ represents the policy network with weights θ, and Qπθ

is the state-action value function. The result shows that moving the policy network’s weights in
the direction that increases the probability of actions with the highest reward in a given state,
will also move weights in direction that maximally increases the total expected reward, J(θ)).

Previous work on RL for simultaneous translation used the REINFORCE algorithm, a vanilla
implementation of the policy gradient theorem, to learn their policies (Gu et al., 2017; Alinejad
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Figure 1: An illustration of the proposed model: at each time step the agent (bottom) receives
an observation from the NMT environment (top) and makes a decison to either read another
source word, Xi, or write the predicted target word, Y ∗, to the target sentence.

et al., 2018). However, the REINFORCE algorithm requires the completion of a target sentence
(i.e. an episode) before the policy network can be updated. That is, instead of using the expected
state-action value function, Qπθ(s, a), the REINFORCE algorithm uses the observed complete
returns, Gt = rt + γrt+1 + · · · + γT rT (where T is the termination time-step for the episode).
Updating at the end of the sentence means sampling complete action sequences from the policy
network, which causes higher variance within the updates and, therefore, slower convergence
to an optimal policy (Williams, 1992; Sehnke et al., 2010; Munos, 2006). Additionally, waiting
until the end of the sentence creates a need for sentence boundaries, which would be a challenge
when handling continuous speech input. Gu et al. (2017) included a baseline within their policy
updates to reduce the variance, however, this does not completely solve the above mentioned
issues with REINFORCE as it still requires waiting until the completion of a target sentence
before updating. Therefore, we experiment with a policy gradient update called the actor-
critic method that does not require the complete episodic sampling used by the REINFORCE
algorithm.

Actor-critic methods employ an additional network known as the critic during the policy
updates. As opposed to sampling complete episode returns like the REINFORCE algorithm,
actor-critic methods estimate the expected returns with the critic network, Vω, and use the
error within the estimation for the policy updates. The error in the estimation of the expected
return is called the temporal difference (TD) target. The TD target is the difference between
the estimated expected return for some state st and the n-step complete return, Gt:t+n, where
the first n steps are observed and the remaining are estimated. The idea behind the TD target
is that the observed return from a state plus a later estimate gives a more accurate indication
of what the actual expected return from state st is, and so the taking the difference between
the less accurate estimate v(st) and better estimate Gt:t+n gives a target that we can move our
current estimate towards. We write the n-step TD target as follows:

δt = Gt:t+n − Vω(st) (4)
= rt+1 + γrt+2 + · · ·+ γn−1Vω(st+n)− Vω(st) (5)

where Vω(s) is the estimate of the expected return from state s by the critic network with
weights ω.

We can now write the result of the policy gradient theorem with the TD target instead,
enabling the policy network to be updated after each time-step rather than at the end of each
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episode.

∇θJ(θ) = Eπθ
[∇θπθ(at | st)δt] (6)

Therefore, by the policy gradient theorem, increasing the weights of the agent’s policy net-
work in the direction of the target TD at each time-step allows us to increase the reward received
at each time-step. By the design of the rewards, the translation quality is increased while the
latency is kept to a minimum.

4.4.3 Experiments

The MT model consists of a 5-layer transformer encoder and a 5-layer transformer decoder,
pre-trained on the WMT 19 parallel corpus (Ng et al., 2019). We used the fairseq library
for the transformer implementation (Ott et al., 2019), and kept the MT model fixed during
training. To implement the RL algorithms for our decision agent, we used the Stable Baselines3
library for the FFN policies and the Pytorch Implementations library for the RNN policies
(Raffin et al., 2021; Kostrikov, 2018). Facilitating the connection between our MT environment
and the RL algorithms within the two libraries was the OpenAI Gym API (Brockman et al.,
2016). With the use of Gym method calls (step, reset, etc.), our environment could receive the
actions from the RL agents and communicate back the observations and rewards in a consistent
manner throughout training. We have made our code available for those interested in better
understanding the implementation details1.

We trained the RL model using two different types of data. Firstly, we experimented with
using offline translations as the reference for the bleu score. Following this we also trained the
RL agent with the human references from the WMT 19 parallel corpus. With the latter we
expected the RL agent to simply find the best possible sequence of reads and writes to attain
the offline translation. The latter however, provides an interesting question as to whether the
RL agent would be able to learn to translate from the partially read source sentence into a
target sentence that is still understood by humans but not a direct translation to save time on
the delay of reading.

Our main aim through the research project was to achieve an RL setup that would work
sufficiently with any given transformer MT model for simultaneous text to text tasks. Further-
more, following the success of previous work (e.g. Gu et al., 2017; Alinejad et al., 2018) we
hoped that implementing an RL agent with a transformer MT model should allow for higher
quality simultaneous translation model given the performance increase of transformers over
RNNs on language translation tasks (Vaswani et al., 2017). In addition to this, we also looked
to extend previous work by implementing less variant and more appropriate RL algorithms,
experimenting with imitation learning, including additional actions (such as a re-translation),
and experimenting with the design of the reward.

We initially started with a similar model within previous work (Gu et al., 2017); only we
replaced the RNN MT model with the transformer MT model described above. However, simply
replacing the RNN with a transformer proved to be insufficient. The recurrent nature of the
RNN MT model allows for the agent’s action history to be stored within the current observation,
whereas, for the transformer MT model, this is not the case. For example, if the agent were
to start by reading twice and then writing, within the RNN MT model, the current decoder
hidden state would contain the previous attentions defined by the actions at those time steps.
However, the transformer decoder cross attention would only contain the currently read source
sentence. Therefore, our initial model did not uphold the required Markov property for RL.

To tackle the above issue, we tested several different versions of the model to allow the
Markov property to be upheld with the transformer MT model. These included alternative
observations and policies networks. For example, the cross attention within the decoder, at time
step t, only contains information about the previously generated target word. Therefore, we
needed to use the decoder’s self-attention vector within the observation as it contains information

1https://github.com/Joshwlks/RL-SLT/tree/main/fairseq/RL
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on the complete target sentence generated until that point. Furthermore, we experimented with
a recurrent policy network that would allow the RL agent to keep track of the history of actions.
Unfortunately, the results from these experiments did not show significant improvement in the
agent’s learned behaviour. An additional idea was to include an attention mechanism within
the RNN policy to help the agent keep track of the most important; however, there was not
enough time to implement and test this idea.

4.4.4 Conclusion

At the time this deliverable was prepared, we had not yet seen positive results from our RL
implementation. As we explain above, we think that the architecture used for an RNN MT
system cannot just be lifted directly to a transformer-based system. However, we believe that
further work to design an observation that upholds the Markov property with the transformer
MT model would achieve positive results given that the idea has been shown to work with
RNN systems in previous works. Furthermore, future work could also explore the inclusion
of additional actions such as an option for the agent to re-translate already outputted target
words.

4.5 Extending Human Interpreting with SLT
In Macháček et al. (2021), we describe ESIC (European Simultaneous Interpreting Corpus),
and present some experiments in using SLT to extend simultaneous interpretation. ESIC is a
corpus derived from the proceedings of the European parliament, consisting of original speech
and its interpretations, transcribed. This paper is included, and fully described, in D4.3, and
also referred to in D1.5. Here we discuss the relevance of the paper to SLT.

We perform some experiments using the ESIC corpus, to examine ways of extending human
interpreting using SLT. In our experiments, we assume that there is already a human interpreter
providing simultaneous interpretation (SI) of original English speech into German, and we would
like to also have SI into Czech. We consider three possible methods: (i) adding an additional
human interpreter for Czech; (ii) using MT to translate from the German interpretation into
Czech; or (iii) using SLT to translate from the original source into Czech. The model for (iii)
is biased towards producing short translations, in an effort to reproduce the shortening often
applied by human interpreters.

The evaluation using bleu is unable to distinguish between the two automatic options, but
that using the indirect option (ii) does increase latency, similar to relay interpreting. However
the indirect approach resulted in shorter targets with simpler vocabulary, albeit with some
evidence of information loss.

For full details, refer to D4.3, where the paper is also included.

5 End-to-End SLT
5.1 Multilingual End-to-end Models: IWSLT 2021 Submission
In the IWSLT multilingual speech translation task (Anastasopoulos et al., 2021), the idea was
to translate speech in 4 languages (English, French, Portuguese and Italian) into text in 5
languages (English, Spanish, French, Portuguese and Italian). Some of the directions in the
matrix were zero-shot, in the sense that no translations were provided in the training data –
but transcriptions were provided for all source languages.

In our submission, we built end-to-end SLT systems for the constrained task setting, using
high capacity models, and techniques to encourage transfer learning. To enable deeper models,
we applied depth scaled initialisation(Zhang and Sennrich, 2019; Zhang et al., 2020b), which has
previously been shown to allow transformer depths of up to 30 layers. For this shared task, we
used this technique to allow the use of a transformer-big model to fully exploit the multilingual
data.
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In order to increase the amount of data available for training, and to provide data for the
zero-short directions, we used data augmentation techniques similar to Zhang et al. (2020b).
Concretely, we used a multilingual MT model to translate each source transcript into all other
languages, and used these translations as the target side of a synthetic speech-to-text corpus.

We combined these techniques with adaptive feature selection (AFS; Zhang et al., 2020a)
to produce an end-to-end multilingual SLT system which outperforms the organisers’ baseline
by over 15 bleu on average, and outperforms our cascade by more than 2 bleu.

The full paper Zhang and Sennrich (2021) is included in Appendix E.

5.2 Robustness of End-to-end Models to Acoustic Noise
5.2.1 Introduction

End-to-end (direct) systems have the advantage of simplicity (one model instead two) but an
additional, often-claimed advantage is their lack of error propagation. In a cascade system, the
output from ASR is generally a single transcription, but if this transcription is incorrect, then
the subsequent MT component has no means to recover. When using an end-to-end model,
however, the system does not have to commit to a single source-language transcription.

But whilst the literature on end-to-end SLT generally touts this lack of error propagation
as an advantage, it is hard to find an explicit statement of what aspects of SLT are expected
to benefit from it. In their review of end-to-end SLT research, Sperber and Paulik (2020) state
that:

. . . models that do not suffer from erroneous early decisions will expectedly exhibit
an advantage over other models especially for acoustically challenging inputs, and
less so for inputs with clean acoustics.

So end-to-end models should perform better than “loosely coupled cascades” (Sperber and
Paulik, 2020) on “acoustically challenging inputs”. In Sperber et al. (2019), the authors com-
pared a cascade system with an alternative that passed a continuous representation from the
ASR model to the MT model, and found that the latter was less sensitive to simulated ASR
errors.

Bentivogli et al. (2021) noted that end-to-end SLT systems promised “higher robustness to
error propagation”, and followed this up with an examination of “errors due to wrong audio
understanding”, implying that they expect such errors to be reduced in end-to-end models.
They acknowledge that such errors are harder to spot in end-to-end systems, and analyse them
using human evaluators. They claim that the number of “audio understanding errors” and the
number of sentences they affect is “significantly lower” for direct models, although they do not
do any statistical significance test, and they note that their analysis is “far from conclusive”.

So does this lack of error propagation for end-to-end systems manifest itself as an increased
robustness to acoustic noise? In order to investigate this, we designed a set of experiments
where we manipulate the level of noise on the input audio, and compare the effect of this input
noise on both direct and end-to-end systems.

5.2.2 Experiments

For these experiments we use the Must-C v1 (Di Gangi et al., 2019b) corpus and the fairseq (Ott
et al., 2019) implementation of end-to-end SLT (Wang et al., 2020), as described in the Must-
C example2. We use the s2t_transformer_s architecture, which consists of 2 convolutional
layers, followed by a 12-layer transformer encoder Vaswani et al. (2017) and a 6 layer transformer
decoder. For the end-to-end models we use ASR pre-training, i.e. we train an ASR system on
the source transcripts using the same architecture, and then initialise the encoder of the SLT
model using the encoder of the ASR model (averaged over the last 10 checkpoints of the ASR
training run). For the ASR model, we preprocess the transcripts using a sentencepiece unigram

2https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
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model (Kudo and Richardson, 2018) and a vocabulary size of 5000, whereas we use a vocabulary
size of 8000 for SLT training. For audio preprocessing, we use the scripts supplied with fairseq
for preprocessing Must-C data.

For our cascade system, we use the same ASR as above, plus an MT system trained on the
text-to-text data in Must-C. The MT system uses the transformer architecture of fairseq, and
again we prepare data with sentencepiece unigram and a vocabulary size of 8000.

To introduce the noise, we apply echo, reverb and whitenoise to the audio files using the
sox3 tool. We use the high, medium and low settings from Cortès (2020), as given in Table 1.

echo reverb whitenoise
low 1 0.8 150 0.2 0.5 0.5 1 1 0 2 0.02
medium 1 0.8 150 0.4 0.5 0.5 1 1 0 4 0.04
high 1 0.8 150 0.6 0.5 0.5 1 1 0 6 0.06

Table 1: The sox parameters used for adding noise to the audio signal. For whitenoise, we
provide the volume, for the other effects, we provide all parameters used, and refer to the sox
manual for details.

For each condition (pipeline, end-to-end) we train using four different types of noised audio
(base – no noise, low, medium and high), and test the resulting models on the same four different
types of noise applied to the test set. We use the tst-COMMON set from Must-C, and repeat
the experiment for the 8 language pairs of Must-C, i.e. English to Dutch, French, German,
Italian, Portuguese, Romanian, Russian and Spanish.

We show the complete results in Figures 2 and 3. The first thing to notice is that we observe
a very similar pattern of results across all language pairs. Since the audio is virtually the same
for all pairs, this indicates that it is the audio processing that has the main effect (and not the
target language). In absolute terms, the end-to-end scores are always lower than the pipeline
scores, but the systems in these experiments do not use any data outside of Must-C, and are
not heavily optimised, as achieving state-of-the-art results was not our aim here.

On the main question, of whether end-to-end systems are less affected by acoustically chal-
lenging inputs, the evidence is not so easy to interpret. If we look at the graphs in the left-hand
column of the two figures (where we train on the base, un-noised corpus), then we see that
increasing the test noise does bring the two lines closer together. In other words, the advantage
of our pipeline over end-to-end is reduced for noisy input. However if we look at the systems
that were trained on noisy audio (in the right-most two columns of the figures) the gap between
pipeline and end-to-end is larger, and changes little as we increase test set noise.

In order to get an alternative view on the results, we consider the bleu difference between
end-to-end and pipeline, and average the difference across all 8 language pairs. The results are
shown in a heatmap in Figure 4, where we plot the bleu difference against the different test and
train conditions. The heatmap also suggests that at high test-time noise levels, our end-to-end
systems are able to close the gap on pipeline systems, but that training end-to-end systems on
noisy audio increases the gap.

5.2.3 Conclusion

We have compared a set of end-to-end SLT systems with a set of pipeline (cascade) systems
trained on the same data. We find that the lack of error propogation in end-to-end systems may
provide an advantage on acoustically confusable inputs, albeit a fairly small advantage, that is
only visible at high levels of acoustic noise.

3http://sox.sourceforge.net/
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Figure 2: Comparison of the effect of training and test noise on end-to-end and pipeline (cascade)
SLT systems. This shows en→{de,es,fr,it,nl,pt}
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Figure 3: Comparison of the effect of training and test noise on end-to-end and pipeline (cascade)
SLT systems.This shows en→{ro,ru}
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Figure 4: Mean bleu advantage of pipeline over end-to-end models, at different noise levels in
training and test. The mean is over all language pairs in Must-C.

5.3 Including Wider Context in End-to-end Models
In (Zhang et al., 2021) we consider the problem of how to exploit inter-sentential context in
end-to-end models. The data sets for training end-to-end models (such as Must-C) are supplied
with manual segmentation in place, in other words sentence boundaries are marked both on the
audio source and the textual target. Systems are generally trained to translate one sentence at
a time, independently of other sentences. For Must-C this ignores the fact that the data sets
consists of a series of talks, each consisting of several spoken sentences.

To include context in the translation, we apply the n-n model (Tiedemann and Scherrer,
2017) from text-to-text translation. In this model, instead of training the system to translate
one sentence at a time, it is trained to translate n sentences into n sentences, where we set
n = 3. In order to cope with the longer sequences required for this model, we apply adaptive
feature selection (Zhang et al., 2020a) to reduce the sequence length required to represent the
audio. At inference time, we found that In-model Ensemble Decoding (IMED) worked best –
this is where we interpolate the context-sensitive model prediction with a prediction from the
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same model, but without context.
We show that our n-n model with IMED improves performance across the Must-C language

pairs, as measured by bleu and a measure called APT which measures accuracy of pronoun
translation (Miculicich Werlen and Popescu-Belis, 2017). In further experiments using dummy
context we show that the model is indeed exploiting the inter-sentential context, and we also
demonstrate that a context-sensitive model may improve homophone translation, retranslation-
based simultaneous SLT and is more robust to segmentation errors.

The full paper is included in Appendix F.

5.4 Fully End-to-end Models Trained from Scratch
In this paper we revisit the typical training regime for end-to-end models to ask whether a more
direct regime is possible. In particular, we first consider whether ASR pre-training is really
necessary. In most work on end-to-end SLT, researchers first train an ASR system using source
transcripts (see e.g. Di Gangi et al., 2019a), and then use this to initialise the end-to-end SLT
model. We also examine the audio feature extraction pipeline, which includes the calculation of
log mel-scale filterbank features (MFCC). We replace this with two feed-forward neural blocks
which extract features from raw audio, and are trained along with the model.

To show that ASR pre-training is not necessary, we start from a baseline model (without
pre-training), and make a series of modelling changes to improve its performance. We find that
by following this process we can close the gap between the model using pre-training, and the
model that does not use pre-training. We found that the most important modelling changes
were (i) an improved architecture which includes a deeper encoder, larger feed-forward dimension
with post-LN (layer normalisation) and depth-scaled initialisation (see Section 5.1); (ii) CTC
(Graves et al., 2006) based regularisation of the encoder layer using the target text; and (iii) a
parameterised distance penalty. Testing across 23 language pairs shows that these innovations
allow from-scratch models to be competitive with pre-trained models in all scenarios except for
very low-resource. Testing the neural acoustic feature model (NAFM) shows that it can perform
equivalently to the MFCC feature extraction.

The full paper is included in Appendix G.
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6 Conclusion
In this deliverable we have described the work of the SLT work package in the second half
of Elitr. Our research has focused mainly on improving simultaneous (online) SLT and on
improving end-to-end SLT, resulting in several publications in both areas.

Papers
The following papers have resulted from the work of WP3 in the second half of the project, i.e
since July 2020. They are all available in the appendices.

• The University of Edinburgh’s Submission to the IWSLT21 Simultaneous Translation Task
Sen et al. (2021) (Published in IWSLT)

• Towards Stream Translation: Adaptive Computation Time for Simultaneous Machine
Translation Schneider and Waibel (2020) (Published in IWSLT)

• Knowledge Distillation Improves Stability in Retranslation-based Simultaneous Translation
(Under review in ACL Rolling Review)

• Beyond Sentence-Level End-to-End Speech Translation: Context Helps Zhang et al. (2021)
(Published at ACL)

• Edinburgh’s End-to-End Multilingual Speech Translation System for IWSLT 2021 Zhang
and Sennrich (2021) (Published at IWSLT)

• Revisiting End-to-End Speech-to-Text Translation From Scratch (Submitted to ICML)

• Simultaneous Translation for Unsegmented Input: A Sliding Window Approach (To be
submitted to ACL Rolling review in April)
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A Simultaneous Translation for Unsegmented Input: A Sliding Win-
dow Approach
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Simultaneous Translation for Unsegmented Input: A Sliding Window
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Abstract

In the cascaded approach to speech translation,
the quality of the final output depends a lot on
the quality of automatic segmentation of the
ASR output. Erroneous segmentation which
happens due to poor sentence-final punctuation
by the ASR system, leads to degradation in
translation quality. To reduce the influence of
automatic segmentation, we present a window-
based approach to translate real ASR outputs
in simultaneous translation without needing to
rely on an automatic segmenter. We train trans-
lation models using parallel windows (instead
of parallel sentences) extracted from the origi-
nal training data. At test time, we translate at
the window level, and join the translated win-
dows using a simple approach to generate the
final translation. Our experiments on English-
German and English-Czech show we do not
need to explicitly sentence-segment the ASR
output, instead, a fixed length window can per-
form even better than segmentation, for both
online and offline translation, achieving im-
provement of 1.3-2.0 BLEU points and greatly
reducing the flicker over the baseline system.

1 Introduction

For machine translation (MT) with textual input, it
is usual to segment the text into sentences before
translation, with the sentences in most text types be-
ing indicated by punctuation. For spoken language
translation (SLT), in contrast, the input is audio
so there is no punctuation provided to assist seg-
mentation. Furthermore, for many speech genres
the input cannot easily be segmented into the type
well-formed sentences found in MT training data,
creating a mismatch between training and test.

In order to address the segmentation problem in
SLT, systems typically include a segmentation com-
ponenet in their pipeline (e.g. Cho et al. (2017)).
In other words, a typical cascaded SLT system con-
sists of automatic speech recognition (ASR – which

outputs lowercased, unpunctuated text) a punctua-
tor/segmenter (which inserts punctuation and uses
it to define segments) and an MT system. The
segmentation can be a neural sequence-sequence
model, and training data is easily synthesised from
punctuated text. However adding segmentation as
an extra neural model has the disadvantage of intro-
ducing and extra neural component to be managed
and deployed. Furthermore, errors in segmenta-
tion have been shown to contribute significantly to
overal errors in SLT (Li et al., 2021), since neu-
ral MT is known to be susceptible to noisy input
(Khayrallah and Koehn, 2018).

These issues with segmentations can be exacer-
bated in the online or simultaneous setting. This
is an important use-case for SLT where we want
to produce the translations from live speech, as the
speaker is talking. In order to mimimise the lag, or
latency, of the translation, we would like to start
translating before speaker has finished their sen-
tence. Online low-latency ASR will typically revise
its output after it has been produced, creating addi-
tional difficulties for the downstream components.
In this scenario the segmentation into sentences
will be more uncertain and we are faced with the
choice of waiting for the input to stabilise (and so
increasing latency) or translating early (and poten-
tially introducing more errors, or having to make
large-scale corrections when the ASR is extended
and updated).

Our approach to translation of unsegmented
speech is to use a sliding window approach. In
this approach, we translate the ASR output as a
series of overlapping windows, using a merging
algorithm to turn the translated windows into a con-
tinuous stream. In order to address the train-test
mismatch, we convert our sentence-aligned training
data into window-window pairs, and remove punc-
tuation and casing from the source. We explain our
algorithms in detail in Section 2.
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For online SLT, we use a retranslation approach
(Niehues et al., 2016; Arivazhagan et al., 2020),
where the MT system retranslates each time there
is an update from ASR. This approach has the ad-
vantage that it can use standard approaches to MT
inference, including beam search, and does not re-
quire a modified inference engine as in streamimg
approaches (e.g. Ma et al. (2019)). Retranslation
may introduce flicker, as outputs are updated, but
this can be traded off with latency by masking the
last k words of the outpuut (Arivazhagan et al.,
2020). The sliding window approach is easily com-
bined with retranslation to create an online SLT sys-
tem which can operate on unsegmented ASR. Each
time there is an update from ASR, we retranslate
the last n tokens and merge the latest translation
into the output stream.

We will show that our sliding window approach
is able to provide quality improvements both to
online and offline SLT. For the online case, our
method improves the tradeoff between latency and
flicker. Our experiments on English-Czech and
English-German show an improvement of 1.3-2
BLEU points in quality on translation and signifi-
cant reduction in flicker.

2 Window-based Translation

In this section, we describe how we convert the par-
allel training data into parallel windows after pre-
processing, and then how we train the MT system,
and finally, how we join the windows to generate
the output.

2.1 Preprocessing
We process the parallel corpus before converting it
to a set of source-target window pairs. We

• remove punctuation from the source sentences.
To do this, we replace a punctuation (and other
special characters) with a space1 and then re-
move the extra spaces in a sentence.

• lowercase the source.

The objective of this step is to simulate source-
side ASR output as we do not have such data.

2.2 Generating the Window Pairs for Training
To convert the parallel sentences into a set of par-
allel windows, we use a word-alignment based ap-
proach. First, we word-align the pre-proprocessed

1Otherwise, we can simply use empty string but hyphen-
ated words become problematic.

 l m n a  b  c  p  r  q 

ASR

Ot  l m n a b  c  r  q 
a  d  b  c  p  r  q Tt

 A B C D E F          

Ot+1

Ot+1

Tt+1

Ot+2

ASR A B C D E F  G      

b  d  c  p  r   t  q  s 

l m n a   b  c  p  r  q 

l m n a b  c  p  r  t  q  s 
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x  q  z  s  w  v Tt

    A B C D E F G      

Ot+1

Tt+1

Ot+2

ASR A B C D E F  G    

b  d  c  p  r   t  q  s 
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match
Case: Match

Case: No match

extend history 

by 1 token

 l m n a b  c  r  q 

Figure 1: Example of how our proposed window-based
translation works at test time in case of a match and
no-match. The text inside a rectangular box is the input
window at time t, which is translated (Tt) by the MT
system. The text in blue shade shows the common
segment between the MT output (Tt) and the output
stream (Ot) at time t. The text in red shade shows the
segment coming from the output window. ••• indicates
there are more tokens.
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parallel corpus D to obtain A using fast align
(Dyer et al., 2013). Then we concatenate all the
source-target sentence pairs (sk, tk) into a single
pair (s, t) and subsequently, revise the alignment
using the Algorithm 1, so that the indexes are still
correct in the concatenated corpus.

Once we have combined the parallel corpus into
a pair of sentences (s, t), we use the revised align-
ment A

′
to generate parallel windows of length

15-25 tokens using the Algorithm 2.

Algorithm 1 Pseudo code for collapsing the paral-
lel corpus into a pair of sentences and revising the
corresponding word alignments.

Require: Parallel corpus D =
{(s1, t1), (s2, t2), ..., (sn, tn)}, alignment
A = {a1, a2, ..., an}, s = ε, t = ε, revised
alignment A

′
= {}

1: for k ← 1 to |D| do
2: for each i, j ∈ ak do
3: i← i+ |s|
4: j ← j + |t|
5: A

′ ← A
′ ∪ (i, j)

6: end for
7: s← s+ sk {concatenation}
8: t← t+ tk {concatenation}
9: end for

10: return s, t, A
′

Algorithm 2 Pseudo code for generating windows
for training.

Require: Unsegmented source s, target t, and
alignment A

′

1: Initialize: idx← 0
2: while idx < |t| do
3: l ← random(Windowmin,Windowmax)

4: Wt ← t[idx : idx+ l] {target window}
5: p = mini{(i, j) ∈ A

′
, idx ≤ j < idx+ l}

6: q = maxi{(i, j) ∈ A
′
, idx ≤ j < idx+ l}

7: Ws ← s[p : q] {source window}
8: idx← idx+ l
9: end while

2.3 Translating Input Windows
In our simultaneous MT setting, we assume that the
ASR system is transcribing incoming the speech
signal into a continuous stream of text. The MT
system splits the stream in to a series of overlapping

fixed length sliding windows. To obtain a new input
to the MT system, the window is shifted by one
token to right every time the stream is extended by
one or more tokens. For every input window the
MT system translates it and sends it to the module
that joins the output windows to the output stream.
We describe this the next section.

2.4 Joining the Output Windows

Our proposed approach works at window level,
where the MT system takes a source window as
input and translate into an window. As the output
windows are not independent units, we need to
join them to a continuous stream of output. Since
two consecutive input windows are overlapping,
the corresponding translated windows also have a
overlap. We use this overlap to join a translated
window to the output stream.

We have shown the pseudo code of merging a
window to the output stream in Algorithm 3. We
assume that we have a stream of ASR output I
which is continuously growing by one token at a
time. Our algorithm requires a window length wl

and the current state of the output stream Ot. For
every new token in the I , our merge module in Al-
gorithm 3 triggers. The decoder D translates the
last wl tokens of I to a target window Tt. For any
translated window Tt and output stream Ot at that
time step, we find the longest continuous matching
segment s. This this match can be empty some-
times. So we set a threshold r, based on which we
decide whether to merge the current target window
Tt or extend input window history by 1 token (to
the left). In our experiments, we extend the his-
tory to maximum of 5 tokens until we have found
a significant match. A higher r assures that the
translation of the current window will not acciden-
tally match a random segment in the stream, and as
the successive windows are just 1 token apart, we
find a match almost always. Once we have found
a significant match, we merge Tt with Ot around
the match, chopping the part before match. This
approach of joining windows is able to handle both
the online and offline situations as we are sliding a
the input window by just 1 token each time.
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Algorithm 3 Pseudo code for online translation
– merging newly translated window into existing
output.

Require: The current state of the output stream
Ot, the input stream I , MT decoderD, window
length wl, threshold r ∈ (0, 1).

1: k = 0
2: while true do
3: Tt ← D(I[|I| − (wl + k) : |I|])
4: O

′
t ← Ot[|Ot| − |Tt| : |Ot|]

5: s, i, j ← TtΨO
′
t {s is longest continuous

matching subsequence. i and j are the start
indices of matching in O

′
t and Tt}

6: k ← k + 1
7: if |s| ≥ |Tt| ∗ r or k > 5 then
8: break
9: end if

10: end while
11: Ot+1 ← Ot[0 : |Ot| − |Tt|+ i] + Tt[j : |Tt|]
12: return Ot+1

3 Experiments

3.1 Datasets and Experimental Settings

For training, we use parallel datasets from WMT
2020 (Barrault et al., 2020) for English-German
and from WMT 2021 (Akhbardeh et al., 2021)
for English-Czech. The details of the data are
shown in Table 1. For the validation set, we use
the concatenation of IWSLT 2014,15 test sets for
English-German, and WMT 2021 development set
for English-Czech. We use the ESIC test set for
evaluation. ESIC is a corpus derived from the Euro-
pean parliament proceedings which has transcripts
of source English speech and interpreted German
and Czech transcripts. This test set is aligned at
document level.

We use the SentencePiece (Kudo and Richard-
son, 2018) tokenizer for preprocessing the windows
with a shared subword (Sennrich et al., 2016) vo-
cabulary size of 32k. We train transformer-based
(Vaswani et al., 2017) NMT models using Marian
(Junczys-Dowmunt et al., 2018) toolkit. MT mod-
els are trained to convergence (using early stopping
of 10) with a learning rate of 0.0003, and translate
using a beam of 6. We train following two type of
models:

• Baseline: Trained and evaluated on segmented
data and evaluated on segmented data gener-
ated by the ASR system.

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M2

Wikititles 410 K
Rapid 452 K

Table 1: Corpora used in training the systems

• Window: Trained on windows of 15-25 tokens
and evaluated on fixed length windows.

4 Results

We evaluate both the offline and online SLT. For
offline SLT, the baseline system is trained using
parallel sentences, and for the online version, the
baseline system is a prefix-prefix retranslation sys-
tem (Niehues et al., 2016; Arivazhagan et al., 2020).
For our proposed window-based system, the of-
fline and online are the same system. We evaluate
our proposed approach on simultaneous interpreted
ESIC test set using Sacrebleu (Papineni et al., 2002;
Post, 2018) score. As the test set is not sentence
aligned, we translate each document and then align
the output sentences (hypothesis) to corresponding
reference document using mwerSegmenter (Ma-
tusov et al., 2005). After aligning, we calculate
sentence level Sacrebleu score on the concatena-
tion of the documents.

The baseline (Seq) is a segment level system,
where we translate the test set at the segmented
(sentence) level as generated by the ASR. For our
proposed window-based method, we evaluate us-
ing different fixed-size windows of length 8, 10,
12, ..., 20 tokens. The results are shown in Table
2. From Table 2, we observe that the proposed
method outperforms the baseline with significant
BLEU points of 1.3 to 2. The improvement in
translation quality (measured using BLEU score)
perhaps happens because our approach implicitly
performs an ensembling on the windows through
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Baseline Window
Pair SF SO 8 10 12 14 16 18 20
en-de 11.2 11.4 12.5 12.8 13.0 13.0 13.1 13.2 13.2
en-cs 9.4 9.4 10.0 10.2 10.4 10.5 10.6 10.6 10.7

Table 2: Comparison between segmented and window
based approaches. Sacrebleu computed after sentence
aligning each document using mwerSegmenter. SO:
Online segment level. SF: Offline segment level.

maintaining a match (threshold) between two suc-
cessive windows.

These BLEU scores in Table 2 across different
window length are the best scores obtained after
exploring different threshold (r) of match (refer to
line 7 of Algorithm 3).We have shown the BLEU
scores for each threshold in Table 3. In our ex-
periments, we found that a threshold of 0.4 yields
lowest flicker for a given window length. Also, at
higher threshold, the merge operation does a lot
of unnecessary retranslations (we have shown the
statistics in Table 4). We can further reduce the
flicker by masking out last few tokens of the output
stream. We calculated the flicker after applying
different masks of 1,2, ..., 10 tokens and plot them
in Figure 2. We notice from Figure 2 that our pro-
posed method outperformed the baseline for any
window length with mask length > 1. The reason
of having lower flicker with our proposed approach
is that our approach doesn’t allow updating the out-
put beyond the last few tokens equal to number
of token in the output window at any point of the
merge operation. The update is restricted by the
output window length.

5 Conclusion

In cascaded speech translation, the role of an auto-
matic sentence segmenter is very important. Incor-
rect segmentation may results in wrong translation.
In this paper, we proposed window-based approach
which works at window (of fixed length of tokens)
level, and removes the need of automatic sentence-
segmentation of ASR output. We experiment with
English-German and English-Czech language pairs
and found that our proposed approach significantly
performs better than the segmentation based trans-
lation obtaining an improvement of 1.3-2 BLEU
points. We also observed that applying masking
on the output reduced the flicker by a significant
margin as compared to the baseline.

Match Threshold (r)
Window(wl) 0.1 0.2 0.4 0.6 0.8

en→de
8 10.8 11.3 12.3 12.4 12.5
10 12.0 12.3 12.7 12.8 12.7
12 12.5 12.7 12.9 13.0 12.9
14 12.7 12.8 13.0 12.9 12.8
16 12.9 12.9 13.1 13.1 13.0
18 13.0 13.0 13.2 13.2 13.1
20 13.1 13.0 13.2 13.2 13.2

en→cs
8 8.3 9.1 9.8 10.0 9.9
10 9.5 9.7 10.2 10.2 10.2
12 10.0 10.2 10.4 10.4 10.4
14 10.2 10.4 10.5 10.5 10.4
16 10.5 10.6 10.6 10.6 10.5
18 10.5 10.5 10.6 10.6 10.5
20 10.5 10.6 10.7 10.5 10.5

Table 3: Results with different window length and
threshold. Sacrebleu computed after sentence align-
ing each document using mwerSegmenter. Bleu scores
in green have the lowest flickers.

Match Threshold (r)
wl 0.1 0.2 0.4 0.6 0.8 #windows

en→de
8 1724 10513 66471 140889 200441 45879
10 1303 7352 50345 118991 185398 45497
12 956 6394 46528 110669 178805 45115
14 702 4809 42886 105207 173017 44733
16 432 4098 40447 100591 167585 44351
18 308 3809 38774 99410 163935 43969
20 215 3407 37358 96701 162025 43587

en→cs
8 2388 14757 74465 148605 206238 45879
10 1257 8906 53651 120135 188964 45497
12 1374 7170 44905 105294 176580 45115
14 1094 5825 40480 97436 169418 44733
16 806 4762 37067 92346 163384 44351
18 489 4118 34710 89392 158114 43969
20 292 3807 33440 87418 154827 43587

Table 4: Number of mismatches (extra retranslations
due to history extension). wl is window length.
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Figure 2: Mask vs Flicker plots at threshold r = 0.4.
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Abstract

We describe our submission to the IWSLT

2021 shared task1 on simultaneous text-to-text

English-German translation. Our system is

based on the re-translation approach where

the agent re-translates the whole source pre-

fix each time it receives a new source token.

This approach has the advantage of being able

to use a standard neural machine translation

(NMT) inference engine with beam search,

however, there is a risk that incompatibility be-

tween successive re-translations will degrade

the output. To improve the quality of the

translations, we experiment with various ap-

proaches: we use a fixed size wait at the begin-

ning of the sentence, we use a language model

score to detect translatable units, and we apply

dynamic masking to determine when the trans-

lation is unstable. We find that a combination

of dynamic masking and language model score

obtains the best latency-quality trade-off.

1 Introduction

In spoken language translation (SLT), there is often

a need to produce translations simultaneously, with-

out waiting for the speaker to finish. For example,

we may be targeting live events such as conferences

or meetings where excessive latency will disrupt

the user experience. In order to achieve low la-

tency SLT, however, translation systems must be

able to cope well with incomplete utterances, and

we find that we need to trade off latency for trans-

lation quality. In research on simultaneous SLT,

we would like to understand how to produce the

best possible trade-off between these two measures.

In the IWSLT 2021 shared task on simultaneous

translation, the aim was to build and evaluate si-

multaneous SLT systems at three different latency

regimes (low, medium and high), as measured us-

ing the Average Lagging (AL; Ma et al. (2019)).

1https://iwslt.org/2021/

There are two main approaches to simultaneous

translation: streaming (Cho and Esipova, 2016; Ma

et al., 2019) where the system appends the output

to a growing hypothesis as new inputs are avail-

able, and re-translation (Niehues et al., 2016, 2018;

Arivazhagan et al., 2020a,b), where, as the name

suggests, the system re-translates the whole prefix

on every update to a completely new output. Re-

translation approach has the advantage that we can

use an unmodified, general purpose, optimised MT

engine with beam-search, but we have to address

the problem of flicker. That is to say, the translation

of a prefix may be changed by the translation of

an extended prefix. Recent work by Arivazhagan

et al. (2020a) has shown that, if measures are taken

to mitigate flicker, then re-translation produces re-

sults comparable to streaming approach. Since the

shared task does not permit any revision of a com-

mitted hypothesis (i.e. flicker is not allowed) we

focus on adapting the re-translation approach for

our submission without introducing any flicker into

a growing hypothesis.

2 Overview of Our Submission

We participated in the English→German text-to-

text simultaneous task. Since we re-translate the

incomplete input (know as a prefix) each time it is

updated, our system will try to modify the trans-

lations produced from earlier prefixes. But as the

task is evaluated using SimulEval (Ma et al., 2020)

which does not permit the modification of com-

mitted output (also known as flickering), we use a

simple approach to generate incremental output at

each re-translation step.

Concretely, we apply a method inspired by the

wait-k streaming approach (Ma et al., 2019) in

our re-translation system in the following manner.

In the task, a simultaneous SLT system is imple-

mented as an agent which must choose between
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READ (read more input) and WRITE (append to

the current translation hypothesis) operations. Our

overall approach is shown in Algorithm 1. The

agent first performs k consecutive READ opera-

tions and then alternatively READs and WRITEs

until the full input sentence is read. Once the input

is consumed, the agent keeps performing WRITE

operations until it reaches the end of the trans-

lated sentence. The WRITE operation involves

re-translating the prefix S and finding the next out-

put word w from output prefix T . If the output

prefix T has a length longer than the committed

hypothesis H , it picks the (i+1)th word of T , else

sends READ signal to the agent, i being the length

of the current hypothesis.

Algorithm 1 Our Re-translation Approach

Require: NMT system φ, k

1: Initialize: S ← {}, H ← {}, w ← ε

2: while w is not 〈eos〉 do

3: if |S| − |H| < k and not finished reading

then

4: READ next input s

5: S ← S ∪ {s}
6: else

7: T ← φ(S)
8: if |T | > |H| then

9: w ← T [|H|+ 1]
10: else

11: w ← ε

12: end if

13: if w is not ε or finished reading then

14: H ← H ∪ {w}
15: WRITE w

16: end if

17: end if

18: end while

However, there is a potential problem with this

approach. In each WRITE step, the output word

w is selected from the (|H|+ 1)th position of out-

put prefix T . Thus if any correction is made by a

re-translation in the initial |H| words, the WRITE

operation won’t be able to recover the mistake. In

other words, our approach is able to suppress the

flicker caused by re-translation, but could end up

gluing together incompatible fragments of the hy-

pothesis. This problem can be worse when the out-

put prefix T flickers too much. To improve trans-

lation quality, we employ two approaches which

aim at detecting meaningful units (MU) and allow-

ing extra READs when inside an MU. An MU is a

chunk of words that has a definite translation and

can be translated independently without having to

wait for more input words (Zhang et al., 2020).

Our first method of detecting MUs relies on the

language model (LM) score. The agent keeps track

of the language model (LM) score of the previous

token and compares it with the score of the current

token. If the LM score is higher than the previous

token, it keeps reading more tokens and does a

re-translation only when this condition is not met.

Here the LM score is the log probability of the

current token given the context. Though LM score

doesn’t guarantee to find meaningful unit every

time but this simple approach shows it is better than

the baseline approach in terms of BLEU score.

Our second method of stabilising the re-

translation approach is based on the idea of dy-

namic masking (Yao and Haddow, 2020). The

dynamic mask approach finds the stable part of the

target prefix by comparing the translation of the

current prefix, with the translation of an extension

of the current prefix. The longest common prefix

(LCP) of the two translations is taken as the sta-

ble part. Figure 1 shows how dynamic masking

works in general. Yao and Haddow (2020) showed

that using dynamic mask could give a better flicker-

latency trade-off than using a fixed mask, without

affecting the translation quality of full sentences.

For our IWSLT submission, we generate the ex-

tended prefixes for dynamic mask simply by ap-

pending UNK (i.e the unknown word symbol) to

the prefix. In Figure 2, we show an example of how

dynamic mask stabilises the translation, by mask-

ing the least stable part of the MT output. This

translation-with-dynamic-mask provides a drop-in

replacement for the MT system φ() in line 7 of

Algorithm 1, except when the agent has read the

full input sentence, when we do not need to apply

any mask.

3 Experimental Details

We use only the officially allowed IWSLT 2021

data sets. The training data include high quality

English-German parallel data from WMT 2020

(Barrault et al., 2020), English-German data from

MuST-C.v2 (Di Gangi et al., 2019), the TED corpus

(Cettolo et al., 2012) and OpenSubtitle (Lison and

Tiedemann, 2016). For development, we use the

concatenation of IWSLT test sets from 2014 and

2015. We test on IWSLT 2018 test set and tst-
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S = a bASR

S′ = a b c

T = p q r

T ′ = p q s t

T ∗ = p qextend

translate

translate

LCP

Figure 1: Dynamic Masking. The string a b is provided as input to the agent (in a full SLT system it would come

from ASR). The MT system then produces translations of the string and its extension, compares them, and outputs

the longest common prefix (LCP)

Source Translation MT Output

prefix Back in New York, Zurück in New York,

extension Back in New York, UNK Damals in New York, in

prefix Back in New York, I Damals in New York have ich

extension Back in New York, I UNK Damals in New York war I Damals in New York

Figure 2: An example of dynamic mask applied during translation. For the first prefix, the translation of the prefix

and its extension disagree, so no output is produced (i.e. all output is masked). For the second prefix, the translation

is more stable.

COMMON from MuST-C.v2. As the there is a

significant overlap between MuST-C.v2 and tst-

20{14,15,18}, we remove the overlaps from the

MuST-C.v2 training data before training.

For preprocessing we rely only on Sentence-

Piece tokenization (Kudo and Richardson, 2018);

no other preprocessing tools are applied. We use

a shared vocabulary size of 32k. Standard NMT

models perform well when translation is done on

a full sentence but as our approach is based on re-

translation, we use training data that is a 1:1 mix

of full sentences and prefix pairs (Niehues et al.,

2018; Arivazhagan et al., 2020a). This ensures that

our model can translate both full sentences and

prefixes. To create prefix pairs, we first randomly

choose a position in the source sentence and then

take the proportionate length of the target sentence.

Along with that we also add modified prefix pairs

in which the source side has a shorter target prefix

appended with the source prefix. The purpose of

these modified prefix pairs was to investigate an

alternative type of stabilisation, where the previous

target prefix is fed into the translation of the current

source prefix, but in early testing this method did

not work well, so we did not pursue it further. The

validation data is also pre-processed similarly to

the training set. Note that this preprocessed val-

idation set is used at training for early stopping

and not for reporting the validation scores in the

Table 2.

For training, we use the Marian toolkit (Junczys-

Dowmunt et al., 2018) with the ‘base’ transformer

architecture (Vaswani et al., 2017). First, we train

a model using the aforementioned pre-processed

training data and then fine-tune the model using

MuST-C.v2 training data which is more of a do-

main specific data for simultaneous translation task.

To train the language model for stabilisation, we

use KenLM (Heafield, 2011) to train a 6-gram lan-

guage model on the source-side training data. We

have shown the number of sentences in each corpus

in Table 1.

Corpus Sentence pairs

Europarl 1.79 M

Rapid 1.45 M

News Commentary 0.35 M

OpenSubtitle 22.51 M

TED corpus 206 K

MuST-C.v2 248 K

Table 1: Corpora used in training the systems

4 Result and Analysis

We evaluate the model’s performance on the full

sentence translation before doing actual simultane-

ous translation. For this evaluation we use Sacre-

BLEU (Post, 2018) on the MuST-C.v2 and TED

2018 test sets. The results on full sentence is shown

in the Table 2. We see there is a significant improve-
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(a) Beam size = 12, Normalization = 1.0 (b) Beam size = 12, Normalization = 0.6

Figure 3: BLEU vs AL plots for English-German with dif beam sizes and length normalization.

(a) Beam size = 12, Normalization = 1.0 (b) Beam size = 12, Normalization = 0.6

Figure 4: BLEU vs DAL plots for English-German with different beam sizes and length normalization.

ment after fine-tuning. For full sentence (or prefix

in case of re-translation) translation we set beam

size 12 and length normalization 1.0 in Marian.

Validation Test

TED 2014,15 TED 2018 MuST-C.v2

Baseline 30.8 27.5 32.7

Fine-tuned 31.9 29.4 33.6

Decoder settings: Beam size = 12; Normalization = 1.0

Table 2: BLEU scores on full sentence translation,

computed with SacreBLEU.a

a BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1

For evaluating the simultaneous translation, we

use SimulEval (Ma et al., 2020) which calculates

SacreBLEU for quality and Average Lagging (AL)

(Ma et al., 2019), differential AL (DAL) (Cherry

and Foster, 2019), and average proportion (AP)

(Cho and Esipova, 2016) for latency. The official

evaluation uses a blind test set, however, for sub-

mission purpose, we evaluate it on the MuST.v2

test set (tst-COMMON) set. We have following

settings for re-translation:

Type k AL BLEU Approach

Full Sentence - - 33.60 -

High 20 14.73 33.09 lm

High 21 14.94 33.2 mask

High 20 14.8 33.3 lm+mask

Medium 6 5.98 30.58 lm

Medium 6 5.72 30.92 mask

Medium 5 5.49 31.55 lm+mask

Low 2 2.38 25.16 lm

Low 2 2.32 26.77 mask

Low 1 2.48 27.57 lm+mask

Table 3: AL vs BLEU scores for three regimes (Low,

Medium, High) on MuST-C.v2 test set using beam size

12 and normalization 1.0. Best scores are in bold.

• baseline: The agent waits for initial k to-

kens and then alternates between READ and

WRITE (using re-translation). This is similar

to the wait-k approach by Ma et al. (2019).

• lm: After the initial k tokens, the agent uses

the language model to determine the “mean-
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ingful unit” boundaries, and only WRITEs

when at a boundary.

• mask: This is similar to the baseline, except

that the agent applies dynamic masking to

produce a more stable translation.

• lm+mask: Combination of lm and mask. Thus

in this approach, the agent first uses the lm

score to decide whether to translate, and then

uses dynamic mask to obtain a more stable

translation.

The official evaluation has three regimes of latency:

low (AL≤ 3), medium (AL≤ 6) and high (AL≤

15). In Table 3, we show the AL and BLEU scores

for the three regimes with different approaches.

We find that LM score and Dynamic masking com-

bined achieve the best AL-BLEU trade-off.

To gain a fuller comparison of approaches, we

calculate AL vs. BLEU and DAL vs. BLEU for

a range of k values, and different stabilisation ap-

proaches and plot them as shown in Figures 3 and 4.

Whilst for any given k, the lm+mask approach has

higher AL (because it adds WAIT operations), we

can see from the trajectory of the plot in Figure 3

that the lm+mask approach has the best AL-BLEU

trade-off. While training the models, we set the

length normalization to 0.6 which is used for scor-

ing the development set for the purpose of early-

stopping. However, we find that a normalization

1.0 performs slightly better than normalization 0.6

when doing re-translation. We show the plots for

both normalization values in figures 3 and 4.

When the AL is 15, for many sentences it is a

full sentence translation and thus all the approaches

have similar BLEU scores. We also notice many

sentences have negative AL scores. As the corpus

AL scores is the average of the sentence level AL

scores, negative scores can reduce the actual AL

score. To address this shortcoming of AL, Cherry

and Foster (2019), propose Differentiable Average

Lagging (DAL) as an alternative. In Figure 4, we

show the DAL vs BLEU scores. In Figure 4, we

also observe that the proposed LM and masking

improve the baseline by a significant margin in

DAL-BLEU trade-off.

5 Conclusion

In this paper, we describe our submission to the

IWSLT 2021 shared task on simultaneous text-to-

text German-English translation. We work with

a re-translation approach, enabling use to use an

unmodified MT inference engine, together with an

adaptation of wait k to trade off quality and latency.

Additionally we proposed two techniques (dynamic

masking and LM score) to improve translation qual-

ity by reducing the potential for flicker. We find

that the combination of the proposed approaches

achieves the best AL-BLEU trade-off.
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Marta R. Costa-jussà, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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Abstract

In simultaneous translation, the retranslation001
approach has the advantage of requiring no002
modifications to the inference engine. How-003
ever in order to reduce the undesirable instabil-004
ity (flicker) in the output, previous work has re-005
sorted to increasing the latency through mask-006
ing, and introducing specialised inference, los-007
ing the simplicity of the approach. In this pa-008
per, we argue that the flicker is caused by both009
non-monotonicity of the training data, and by010
non-determinism of the resulting model. Both011
of these can be addressed using knowledge dis-012
tillation. We evaluate our approach using si-013
multaneously interpreted test sets for English-014
German and English-Czech and demonstrate015
that the distilled models have an improved016
flicker-latency tradeoff, with quality similar to017
the original.018

1 Introduction019

Simultaneous machine translation systems, which020

process their input word by word instead of sen-021

tence by sentence, must strike a balance between022

producing output immediately (and so reducing023

quality because of incomplete input) and waiting024

for further input (and so increasing latency). A025

good simultaneous translation system will provide026

a pareto-optimal tradeoff between quality and la-027

tency. A straightforward way of doing simulta-028

neous translation is retranslation (Niehues et al.,029

2016), which has the advantage that it can be used030

with an unmodified machine translation (MT) in-031

ference engine, and can perform better than the al-032

ternative, streaming-based approaches (Arivazha-033

gan et al., 2020b). The disadvantage is that retrans-034

lation may change previous output causing flicker,035

leading to a poor user experience, and needs to be036

balanced with latency and quality.037

We argue that flickering is caused by two differ-038

ent (but related) issues: (i) instability of the trans-039

lation – the system “changes its mind” as more040

source is revealed; (ii) non-monotonicity of the 041

translation – the system favours a non-monotonic 042

translation, which means it needs high latency in 043

order to avoid flicker. Some of this instability and 044

non-monotonicity is necessary – forced by syntac- 045

tic differences between source and target, and lack 046

of information in the prefixes – but some is due 047

to arbitrary choices of the model and we aim to 048

reduce these as much as possible. 049

Researchers in non-autogressive translation 050

(NAT) have identified a related problem, known 051

as the “multimodality” problem (Gu et al., 2018), 052

where the model has two or more high scoring 053

translations but outputs a poor quality mixture of 054

them (because of the independence assumptions 055

in NAT). The solution to this problem is to use 056

sequence-level knowledge distillation (Kim and 057

Rush, 2016), which was also shown to result in 058

more monotonic translations (Zhou et al., 2020). 059

In simultaneous translation, we observe a differ- 060

ent type of multimodality (see Table 4), where 061

the model has two competing translations (which 062

may be synonyms) and flips between the two, un- 063

necessarily. We therefore investigate whether the 064

same solution as proposed there, i.e. knowledge 065

distillation or teacher-student models, can also re- 066

duce flicker in simultaneous translation. We will 067

show that an appropriately trained student model, 068

in other words a model trained on a synthetic cor- 069

pus created by translating using a teacher model, 070

is able to achieve the same quality as the teacher, 071

but with substantially lower flicker. 072

2 Background 073

We focus on simultaneous translation using the 074

retranslation approach, and in particular how to 075

stabilise the output, without reducing quality, and 076

without sacrificing the simplicity of the inference. 077

The problem of reducing flicker was considered 078

by Arivazhagan et al. (2020a), who showed that 079

masking the last k words of the output, combined 080

1
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with biasing the beam search towards the previ-081

ously translated prefix could improve the flicker-082

latency tradeoff, although this required modifica-083

tions to the inference engine. To set the mask dy-084

namically, Yao and Haddow (2020) showed that085

the system could make predictions of the contin-086

uation of the prefix, and compare the translations087

of these continuations to the translations of the cur-088

rent prefix. However this method has the disadvan-089

tage of requiring extra translation inference, mak-090

ing it less efficient at runtime.091

Evaluation of simultaneous translation requires092

that we consider more than just the quality of093

translation, we must also consider the latency, and094

if we are using retranslation, we should consider095

flicker. The quality of the translation can evalu-096

ated by comparing the final output of each sen-097

tence with a reference – we will show BLEU (Pa-098

pineni et al., 2002; Post, 2018), CHRF (Popovi,099

2015) and COMET (Rei et al., 2020) scores. For100

evaluation of flicker, we will use normalised era-101

sure (Arivazhagan et al., 2020a), which measures102

the number of tokens that must be deleted from103

the suffix of the previous translation to produce104

the next, normalised by sentence length. The mea-105

surement of latency has been the subject of some106

debate in the literature, with several different mea-107

sures proposed (Ma et al., 2019a; Cherry and Fos-108

ter, 2019; Ansari et al., 2021), and for retranslation109

systems there is the further question of whether to110

use the time that a word appears, or the time that it111

stabilises, in the latency calculation. In our exper-112

iments, we will vary the amount of output mask-113

ing, and observe the effect on flicker. The amount114

of masking is a clear measure of how much delay115

there is in the translation, and is easily controllable.116

The aim is to improve the mask-flicker tradeoff117

curve, and so be able to use a shorter mask with118

the same flicker budget.119

In sequence-level knowledge distillation (Kim120

and Rush, 2016), a smaller student model is cre-121

ated using data generated by the larger teacher122

model. This has found application in MT effi-123

ciency (Junczys-Dowmunt et al., 2018), where the124

small size of the student models ensure that they125

make inference much faster, and they can also be126

run using a small beam. In non-autoregressive127

translation, teacher-student models are able to re-128

duce the multimodality problem – by reducing129

the number of possible translations favoured by130

the model, the effect of the conditional indepen-131

dence assumption in NAT is mitigated (Zhou et al., 132

2020). 133

For our purposes, teacher-student methods play 134

a similar role. Because the student model tends to 135

prefer a single translation hypothesis, the model 136

is less likely to swap between translation hypothe- 137

ses unnecessarily as the source prefix is extended. 138

Also, since the student model is trained on MT 139

output, where the target order tends to be similar 140

to the source order, the student is more likely to 141

avoid unnecessary reorderings, generating a more 142

monotone translation, which can be built up incre- 143

mentally. We will demonstrate these points exper- 144

imentally in the next section. 145

Recently, Chen et al. (2021) also proposed to 146

use pseudo-reference sentences obtained through 147

forward translation of the source sentences to im- 148

prove simultaneous translation. Unlike our work, 149

they considered a streaming approach (specifically 150

wait-k (Ma et al., 2019b)) where the system can 151

only append to the output, it does not flicker like 152

retranslation. They showed that they could im- 153

prove the quality-latency tradeoff of wait-k using 154

their distillation approach, but to create the train- 155

ing data for the student system they used wait-k 156

and filtering – we avoid these complications by 157

just using the baseline system as the teacher. 158

3 Experiments 159

3.1 Data 160

In much of the previous work on simultaneous MT, 161

models are evaluated on translations that were pro- 162

duced offline, where the translators could access 163

the full sentence. As pointed out by Zhao et al. 164

(2021), this may not be a realistic evaluation. So 165

in this work, we test on the recently released ESIC 166

corpus (Macháek et al., 2021), a corpus derived 167

from the European parliament proceedings which 168

contains both transcripts of the original speeches, 169

and transcripts of the simultaneous interpretation 170

of those speeches. ESIC also contains the corre- 171

sponding text-based records, which can be consid- 172

ered as offline translations. ESIC is available for 173

English→Czech and English→German, and it is 174

aligned at the document level, but not at the sen- 175

tence level. We use the test portion for evaluation. 176

We train our systems using offline translations, 177

as there are no large corpora of simultaneous in- 178

terpretation for training. For English→German, 179

we use the IWSLT 2021 data sets (Anastasopoulos 180

et al., 2021). This includes the English→German 181

2
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data from WMT 2020 (Barrault et al., 2020). For182

development, we use the concatenation of IWSLT183

test sets from 2014 and 2015. We removed the184

train/test overlaps – between MuST-C.v2 and ear-185

lier IWSLT test sets, and between europarl and186

ESIC. For English→Czech, we use the training187

and valid set from WMT21 (Akhbardeh et al.,188

2021). Training data sizes are shown in Table 3.189

3.2 Teacher System190

Our initial system, which will later be used as a191

teacher model (Section 3.3), is a transformer base192

model1 (Vaswani et al., 2017) trained with marian193

(Junczys-Dowmunt et al., 2018). We use prefix194

training to reduce the mismatch between sentence-195

level training data and prefix-based inference at196

test time (Niehues et al., 2018). For each paral-197

lel sentence pair in the training set, we generate198

a corresponding prefix pair by truncating using a199

randomly chosen proportionate length.200

All data is pre-processed using a unigram lan-201

guage model (Kudo, 2018) with SentencePiece202

(Kudo and Richardson, 2018) with a shared sub-203

word (Sennrich et al., 2016) vocabulary size of204

32k. We train the MT models to convergence (us-205

ing early stopping of 10) with a learning rate of206

0.0003, and translate using a beam of 6.207

3.3 Teacher-Student Training208

In order to create a more stable system, we use209

the teacher model in the previous section to gener-210

ate training data for student models. These student211

models are trained in the same way, with the same212

architecture, but with training data synthesised by213

the teacher. For each source sentence, we generate214

n-best translations and then select the best trans-215

lation that has highest score against the reference216

translation. In our experiments we consider 8-best217

translation. We use three different scores (BLEU,218

CHRF, and model2 score), to select distilled train-219

ing data.220

In order to calculate the monotonicity of the221

training data, we use Kendall’s tau distance. To222

compute the distance, we first align the parallel223

data using fast_align (Dyer et al., 2013) and then224

find the source permutation π of a target sentence225

1With 65 million parameters.
2For distillation using model score, we do not compare

with a reference translation. Instead, each source is forward
translated into the target language by the teacher model and
we take the highest scoring translation.
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Figure 1: Sentence level Flicker vs Latency plot. The
y-axis represents flicker and the x-axis represents the
number of words that are masked.

as 226

π = {j : ith target word is aligned to jth source word} 227

We calculate the Kendall’s tau distance between 228

π and π
′
, where 229

π
′
= {i : ith target word } 230

The scores are calculated at the sentence level 231

and then averaged over a parallel corpus. The 232

higher tau score indicates more monotonicity. 233

In our experiments, we find the distance be- 234

tween 235

- the source and reference (Source-Reference) 236

- the source and 1-best distilled target (Source- 237

Distilledmodel) 238

- the source and distilled target obtained 239

from n-best using BLEU score (Source- 240

DistilledBLEU) 241

- the source and distilled target obtained 242

from n-best using ChrF score (Source- 243

DistilledChrF) 244

3
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Model BLEU ChrF COMET-qe Flicker
En→De

Interpreted

Teacher 17.6 59.0 0.539 2.07
Studentmodel 17.5 58.9 0.530 1.46 (29.46% ↓)
StudentBLEU 17.6 58.9 0.527 1.67 (19.32% ↓)
StudentChrF 17.6 59.0 0.530 1.69 (18.35% ↓)

En→Cs
Teacher 14.6 51.7 0.680 1.88
Studentmodel 14.6 51.7 0.660 1.45 (22.87% ↓)
StudentBLEU 14.6 51.7 0.670 1.56 (17.02% ↓)
StudentChrF 14.7 51.8 0.661 1.39 (26.06% ↓)

En→De

Translated

Teacher 36.4 63.7 0.540 2.61
Studentmodel 36.0 63.4 0.533 1.70 (34.86% ↓)
StudentBLEU 36.4 63.6 0.534 1.94 (25.67% ↓)
StudentChrF 36.6 63.9 0.532 2.02 (22.60% ↓)

En→Cs
Teacher 33.9 60.0 0.721 2.33
Studentmodel 33.3 59.7 0.693 1.62 (30.47% ↓)
StudentBLEU 33.9 60.1 0.701 1.81 (22.31% ↓)
StudentChrF 34.0 60.2 0.694 1.66 (28.75% ↓)

Table 1: Comparison between different approaches on ESIC test set. BLEU and ChrF scores are calculated at
document level for Interpreted category and at sentence level for translated category using Sacrebleu. The COMET-
qe score is calculated between source and the hypothesis using reference-less wmt20-comet-qe-da model. We use
reference-less scoring as we do not have equal number source and reference lines for interpreted ESIC corpus.
The flicker scores are calculated at sentence level on outputs without any mask. In parentheses, we show relative
reduction in flicker.

Model Pair Distance

En→De
Source-Reference 0.793
Source-DistilledBLEU 0.826
Source-DistilledChrF 0.848
Source-Distilledmodel 0.857

En→Cs
Source-Reference 0.849
Source-DistilledBLEU 0.900
Source-DistilledChrF 0.904
Source-Distilledmodel 0.906

Table 2: Kendall’s tau distances. Higher scores indicate
more monotonicity.

We have presented the tau scores in Table 2.245

From Table 2, we observe that the distillation246

makes the training data more monotonic and 1-247

best distilled data has the best tau distance.3248

3.4 Stability of Student Models249

We calculate the BLEU score at sentence and doc-250

ument level using Sacrebleu for translated and in-251

terpreted ESIC testset, respectively, and flicker at252

sentence level using SLTev toolkit (Ansari et al.,253

2021). We compare the quality of teacher and stu-254

dent models in Table 1.255

We observe that student models have a substan-256

3Additionally, we use tau distance to filter the 1-best dis-
tilled data, and then we train more models on the filtered data.
For filtering purpose, we sort the distilled parallel corpus by
monotonicity and take top 90, 80, 70, and 60% parallel sen-
tences for training student models. But this did not reduce the
flicker further significantly.

tially reduced flicker (by 17-34%) with no loss 257

in either document or sentence-level BLEU or 258

ChrF scores, although there is a moderate drop 259

in COMET-qe. The flicker can be further re- 260

duced with masking the subsequent output pre- 261

fixes. We apply different fixed mask of length 262

1-10 and plot the flicker (measure using normal- 263

ized erasure) against each fixed mask in Figure 1. 264

Masking helps reducing the flicker and the stu- 265

dent models flicker less than the teacher for a 266

given mask length. Since quality is calculated 267

on the final output, masking does not impact 268

BLEU/chrF/COMET. 269

4 Conclusion 270

In this paper, we proposed to reduce the flicker 271

in retranslation-based simultaneous translation 272

through knowledge distillation. We use differ- 273

ent metrics to select the synthetic target-side data, 274

which are monotonic measured using Kendall’s 275

tau distance, from n-best forward translations. We 276

use the synthetic data to train the retranslation- 277

based simultaneous translation system. Our eval- 278

uation on interpreted testsets for English-German 279

and English-Czech show significant reduction in 280

the flicker with similar quality as the teacher. 281

4
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Marta R. Costa-jussà, Christian Federmann, Yvette331
Graham, Roman Grundkiewicz, Barry Haddow,332
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp333
Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof334
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Appendix 471

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M4

Wikititles 410 K
Rapid 452 K

Table 3: Corpora used in training the systems
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Source I hope you will have a little time and energy to focus on another report which is, despite its
technicality, quite important for all of us.

Traget: Ich
Ich hoffe,
Ich hoffe, Sie
Ich hoffe, Sie
Ich hoffe, Sie haben
Ich hoffe, Sie haben ein
Ich hoffe, Sie werden ein wenig Zeit
Ich hoffe, Sie haben etwas Zeit
Ich hoffe, Sie haben etwas Zeit und
Ich hoffe, Sie werden etwas Zeit und Energie haben,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf ein anderes Thema
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen weiteren Bericht zu konzentrieren,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen anderen Bericht zu konzentrieren,
...
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf einen anderen Bericht zu konzentrieren,
der trotz seiner Formalität für uns alle sehr wichtig ist.

Table 4: Examples of flicker caused by the teacher model. Source is the original full sentence which is input as a
growing input prefix. Target is the output prefix in successive retranslations.
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Abstract

Simultaneous machine translation systems

rely on a policy to schedule read and write op-

erations in order to begin translating a source

sentence before it is complete. In this paper,

we demonstrate the use of Adaptive Compu-

tation Time (ACT) as an adaptive, learned pol-

icy for simultaneous machine translation using

the transformer model and as a more numer-

ically stable alternative to Monotonic Infinite

Lookback Attention (MILk). We achieve state-

of-the-art results in terms of latency-quality

tradeoffs. We also propose a method to use

our model on unsegmented input, i. e. without

sentence boundaries, simulating the condition

of translating output from automatic speech

recognition. We present first benchmark re-

sults on this task.

1 Introduction

Simultaneous machine translation (MT) must ac-

complish two tasks: First, it must deliver correct

translations on incomplete input as early as possi-

ble, i. e. before the source sentence is completely

spoken. Second, in a realistic usage scenario, it

must deal with unsegmented input, either speech

directly or automatic transcriptions without punc-

tuation or sentence boundaries. Until now, staged

models (Niehues et al., 2016), which have a sep-

arate component to insert punctuation (Cho et al.,

2012) achieved the best results in this task. In this

paper, we will present the first step towards an end-

to-end approach.

In recent years, a number of approaches for neu-

ral simultaneous machine translation have been

proposed. They generally build on the com-

mon encoder-decoder framework (Sutskever et al.,

2014), with the decoder deciding at each step

whether to output a target language token based

on the currently available information (WRITE) or

to wait for one more encoder step in order to have

more information available (READ).

In order to do this, the decoder relies on a wait

policy. The published policies can be broadly di-

vided into two categories:

• Fixed policies, which rely on pre-programmed

rules to schedule the read and write operations,

such as wait-k (Ma et al., 2019a) and wait-if

(Cho and Esipova, 2016).

• Learned policies, which are trained either

jointly with the translation model or sepa-

rately. Examples include MILk (Arivazha-

gan et al., 2019) and the models of Satija and

Pineau (2016) and Alinejad et al. (2018)

However, all of the above approaches train and

evaluate their models on individual sentences. We

want to work towards a translation system that can

work on a continuous stream of input, such as text

without punctuation and sentence segmentation. In

a realistic usage scenario, segmentation informa-

tion is not available and an end-to-end solution

without a separate segmentation component is de-

sirable. We therefore propose the use of Adaptive

Computation Time (Graves, 2016) for simultane-

ous machine translation. This method achieves

a better latency-quality trade-off than the previ-

ous best model, MILk, on segmented WMT 2014

German-to-English data. By extending this model

with Transformer-XL-style memory (Dai et al.,

2019), we are able to apply it directly to unseg-

mented text.

2 Background

As Arivazhagan et al. (2019) point out, most pre-

vious work in simultaneous machine translation

focuses on segmenting continuous input into parts

that can be translated, whether it is utterances

speech or sentences for text (Cho et al., 2012, 2017;
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Fügen et al., 2007; Oda et al., 2014; Yarmoham-

madi et al., 2013). For statistical machine trans-

lations, some approaches for stream translation

without segmentation were known (Kolss et al.,

2008). The more recent neural simultaneous MT

approaches simply take this segmentation as given

and focus on translating simultaneously within a

sentence.

Several approaches (Grissom II et al., 2014;

Niehues et al., 2018; Alinejad et al., 2018) try to

predict the whole target sentence in advance, be-

fore the input is complete. It may be possible to

extend such approaches to work on an input stream,

but they have the undesirable property of overrid-

ing their old output, which can make reading the

translation difficult to follow for a human.

Satija and Pineau (2016) train the wait policy as

an agent with reinforcement learning, considering

the pre-trained and fixed MT system as part of the

environment. Such an agent could learn to also

predict the end of sentences and thus extend to

stream translation, but it would be effectively the

same as an explicit segmentation.

Cho and Esipova (2016) and Ma et al. (2019a)

each define their own fixed policy for simultaneous

MT. Wait-k in particular is attractive because of

its simplicity and ease of training. However, we

believe that for very long input streams, an adaptive

policy is necessary to make sure that the decoder

never “falls behind” the input stream.

Most recently, the best results are produced by

monotonic attention approaches (Raffel et al., 2017;

Chiu and Raffel, 2017), in particular Arivazhagan

et al. (2019). Their approach uses RNNs, whereas

we would like to use the state-of-the-art Trans-

former architecture (Vaswani et al., 2017). Unfor-

tunately, we were unable to transfer their results to

the Transformer, largely due to numerical instabil-

ity problems. Ma et al. (2019b) claim to have done

this, but we were unable to reproduce their results

either. We therefore propose our own, more stable,

architecture based on Adaptive Computation Time

(ACT, Graves (2016))

3 Model

A machine translation model transforms a source

sequence x = {x1, x2, . . . x|x|} into a target se-

quence y = {y1, y2, . . . y|y|}, where, generally,

|x| �= |y|. Our model is based on the Transformer

model (Vaswani et al., 2017), consisting of an en-

coder and a decoder. The encoder produces a vector

representation for each input token, the decoder au-

toregressively produces the target sequence. The

decoder makes use of the source information via

an attention mechanism (Bahdanau et al., 2015),

which calculates a context vector from the encoder

hidden states.

h1...|x| = ENCODER(x1...|x|) (1)

ci = ATTENTION(yi−1, h1...|x|) (2)

yi = DECODER(yi−1, ci) (3)

In the offline case, the encoder has access to all

inputs at once and the attention has access to all

encoder hidden states. The standard soft attention

calculates the context vector as a linear combina-

tion of all hidden states:

eni = ENERGY(yi−1, hn) (4)

wn
i =

exp(eni )
∑|x|

k=1 exp(e
k
i )

(5)

ci =

|x|
∑

n=1

wk
i hn (6)

Here, Energy could be a multi-layer perceptron

or, in the case of Transformer, a projection followed

by a dot product.

In the simultaneous case, there are additional

constraints: Each encoder state must only depend

on the representations before it and the inputs up

to the current one as input becomes available in-

crementally. In addition, we require a wait policy

which decides in each step whether to READ an-

other encoder state or to WRITE a decoder output.

Each READ incurs a delay, but gives the decoder

more information to work with. We denote the en-

coder step at which the policy decides to WRITE

in decoder step i as N(i).

hj = ENCODER(hj−1, xj) (7)

ani = POLICY(yi−1, hn) (8)

N(i) = min {n : ani = WRITE } (9)

ci = ATTENTION(yi−1, h1...N(i)) (10)

yi = DECODER(yi−1, ci) (11)

Note that this kind of discrete decision-making

process is not differentiable. Some approaches

using reinforcement learning have been proposed
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(Grissom II et al., 2014; Satija and Pineau, 2016),

but we will focus on the monotonic attention ap-

proaches.

3.1 Monotonic Attention

In monotonic attention (Raffel et al., 2017), the

context is exactly the encoder state at N(i). Addi-

tionally, N(i) increases monotonically. For each

encoder and decoder step, the policy predicts pni ,

the probability that we will WRITE at encoder step

n. During inference, we simply follow this (non-

differentiable) stochastic process1. During training,

we instead train with the expected value of ci. To

that end, we calculate αn
i , the probability that de-

coder step i will attend to encoder step n.

pni = σ(ENERGY(si−1, hn)) (12)

ani ∼ Bernoulli(pni ) Inference only (13)

αn
i = pni

(

(1− pn−1
i )

αn−1
i

pn−1
i

+ αn
i−1

)

(14)

ci =

|x|
∑

n=1

αn
i hn (15)

This model needs no additional loss function

besides the translation loss. It is not incentivised

to READ any further than it has to because the

model can only attend to one token at a time. At

the same time, this is a weakness of the model, as

it has access to only a very narrow portion of the

input at a time.

To address this, two extensions to monotonic

attention have been proposed: Monotonic Chunk-

wise Attention (MoChA, Chiu and Raffel (2017))

and Monotonic Infinite Lookback Attention (MILk,

Arivazhagan et al. (2019)), which we will look at

in more detail here.

3.2 Monotonic Infinite Lookback Attention

Monotonic Infinite Lookback Attention (MILk)

combines soft and monotonic attention. The at-

tention can look at all hidden states from the start

of the input up to N(i), which is determined by a

monotonic attention module. The model is once

again trained in expectation, with pni and αn
i calcu-

lated as in eqs. (12) and (14). The attention energies

eni are calculated as in equation (4).

1Although we encourage the model to make clear decisions
by adding noise in the policy, see the original paper for more
details.

βn
i =

|x|
∑

k=n

(

αk
i exp(e

n
i )

∑k
l=1 exp(e

l
i)

)

(16)

ci =

|x|
∑

n=1

βn
i hn (17)

This method does however introduce the need

for a second loss function, as the monotonic atten-

tion head can simply always decide to advance to

the end of the input where the soft attention can at-

tend to the whole sequence. Therefore, in addition

to the typical log-likelihood loss, the authors intro-

duce a loss derived from n = {N(1), . . . N(|y|)},

weighted by a hyperparameter λ:

L(θ) = −
∑

(x,y)

log p(y|x; θ) + λC(n) (18)

Unfortunately, despite following all advice from

Raffel et al. (2017), applying gradient clipping and

different energy functions from Arivazhagan et al.

(2019), we were not able to adapt MILk for use

with the transformer model, largely due to the nu-

merical instability of calculating αn
i (see Raffel

et al. (2017) for more details on this problem). We

therefore turn to a different method which has so

far not been applied to simultaneous machine trans-

lation, namely Adaptive Computation Time (ACT,

(Graves, 2016)).

3.3 Adaptive Computation Time

Originally formulated for RNNs without the

encoder-decoder framework, Adaptive Computa-

tion Time is a method that allows the RNN to “pon-

der” the same input for several timesteps, effec-

tively creating sub-timesteps. We will first go over

the original use-case, although we intentionally

match the notation above. At each timestep i, we

determine N(i), the number of timesteps spent pon-

dering the current input. We do so by predicting a

probability at each sub-timestep sni . We stop once

the sum of these probabilities exceeds a threshold.

We also calculate a remainder R(i). Eqns. (19)

through (22) are adapted from Graves (2016) and

apply to RNNs:
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pni = σ(ENERGY(sni )) (19)

N(i) = min{n′ :

n′

∑

n=1

pni ≥ 1− ǫ} (20)

R(i) = 1−

N(i)−1
∑

n=1

pni (21)

αn
i =

{

R(i) if n = N(i)
pni otherwise

(22)

It follows directly from the definition that αi is a

valid probability distribution. Compared to mono-

tonic attention, ACT directly predicts the expected

value for the amount of steps that the model takes,

rather than calculating it from stopping probabilites.

As-is, the model has no incentive to keep the pon-

der times short, so we introduce an additional loss:

C =

|x|
∑

i=1

N(i) +R(i) (23)

Note that the computation for N(i) is not differ-

entiable so it is treated as a constant and the loss is

equivalent to just summing the remainders.

We now go on to transfer ACT to the encoder-

decoder domain. Now, instead of pondering the

input to an RNN, like in original ACT, the decoder

ponders over zero or more encoder steps. The en-

coder still works as in eq. (7) and does not use ACT.

Instead, we apply the ACT ponder mechanism to

the monotonic encoder-decoder attention. Let N(i)
denote the last encoder step to which we can attend.

We make sure that N(i) advances monotonically:

pni = σ(ENERGY(yi−1, hn)) (24)

N(i) = min{n′ :
n′

∑

n=N(i−1)

pni ≥ 1− ǫ} (25)

αn
i =







R(i) if n = N(i)
pni if N(i− 1) ≤ n < N(i)
0 otherwise

(26)

Then we proceed as in equations (16) and (17).

Note that in this formulation, it is possible that

N(i) = N(i − 1) (i. e. the model pondering for

zero steps), indicating consecutive WRITEs. In

original ACT, it is not possible to ponder the input

for zero steps. Also, similar to MILk, we consider

p
|x|
i to be 1 always. See figure 2 for a visualisation

of αn
i on a concrete example.

3.4 Transformer XL

Finally, we introduce two aspects of the Trans-

former XL language model (Dai et al., 2019) into

our model: Relative attention and memory.

We replace the Transformer self-attention in both

encoder and decoder with relative attention. In

relative self-attention, we calculate ENERGY as

follows:

ENERGY(xi, xj) = x⊤i W
⊤

q WE xj

+ x⊤i W
⊤

q WR Ri−j

+ u⊤WE xj

+ v⊤WR Ri−j

(27)

Where Wq,We,WR, u, v are learnable parame-

ters and R are relative position encodings. After-

wards, we proceed as in equation (16) and (17) for

simultaneous models or eqautions (5) and (6) for

offline models.

For our streaming model, we also use Trans-

former XL-style memory during training. This

means that we keep the hidden states of both en-

coder and decoder from the previous training step

during training. Both self-attention and encoder-

decoder attention are able to attend to these states

as well as the current input sentence. However,

no gradients can flow through the old states to the

model parameters.

3.5 Stream Translation

Our stream translation model should not rely on

any segmentation information of the input and must

be able to translate a test set as a single, continuous

sequence. To achieve this, we extend the standard

transformer model in the following ways:

• We use ACT monotonic attention to constrain

the encoder-decoder attention. The position of

the monotonic attention head also gives us a

pointer to the model’s current read position in

the input stream that advances token by token,

and not sentence by sentence and therefore

requires no sentence segmentation.

• We change all self-attentions to relative atten-

tion, as well as removing absolute position

encodings. We could encode positions as ab-

solute since the beginning of the stream. How-

ever, Neishi and Yoshinaga (2019) showed

that Transformer with absolute position encod-

ings generalizes poorly to unseen sequence
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lengths. In a continuous stream, relative en-

codings are the more logical choice.

• We add Transformer XL-style history to the

model so that even the first positions of a

sample have a history buffer for self-attention.

This simulates the evaluation condition where

we don’t restart the model each sentence.

• During inference, we cannot cut off the his-

tory at sentence boundaries (such as keeping

exactly the last sentence) because this infor-

mation is not available. Instead, we adopt a

rolling history buffer approach, keeping nh

previous positions for the self-attention. To

simulate this condition in training, we apply a

mask to the self-attention, masking out posi-

tions more than nh positions in the past.

• During training, we concatenate multiple sam-

ples to a length of at least nh tokens. This

is to allow the model to READ past the end

of an input sentence into the next one. Nor-

mally, this is prevented by setting p
|x|
i = 1.

However during inference, |x| is not available

and therefore the model should learn to stop

READing at appropriate times even across

sentence boundaries.

• We use the ponder loss of equation (23) in

addition to the cross-entropy translation loss

with a weighting parameter λ as in equation

(18).

4 Experiments

4.1 Segmented Translation

In our first set of experiments, we demonstrate the

ability of ACT to produce state-of-the art results in

sentence-based simultaneous machine translation.

For comparison to Arivazhagan et al. (2019), we

choose the same dataset: WMT2014 German-to-

English (4.5M sentences). As they report their

delay metrics on tokenized data, we also use the

same tokenization and vocabulary.

All models follow the Transformer “base” con-

figuration (Vaswani et al., 2017) and are imple-

mented in fairseq (Ott et al., 2019). In addition

to the simultaneous models, we train a baseline

Transformer model. All models except the base-

line use relative self-attention. We pre-train an

offline model with future-masking in the encoder

as a common basis for all simultaneous models.

Figure 1: Quality-Latency comparison for German-to-

English newstest2015 in tokenized DAL (top), AL

(bottom left) and AP (bottom right)

For the simultaneous models, we vary the value

of λ and initialize the parameters from the pre-

trained model. We found that training from the

start with the latency loss can cause extreme la-

tency behaviour, where the model either reads no

input from the source at all or always waits until

the end. We theorize that the best strategy would

be to introduce the latency loss gradually during

training, but leave that experiment for future work.

All models are trained using the Adam Optimizer

(Kingma and Ba, 2015). For the pre-training model,

we vary the learning rate using a cosine schedule

from 2.5 · 10−4 to 0 over 200k steps. For the ACT

model, we start the learning rate at 4 ·10−5 and use

inverse square root decay (Vaswani et al., 2017) for

1000 steps.

We measure translation quality in detokenized,

cased BLEU using sacrebleu2 (Post, 2018). We

measure latency in Average Lagging (Ma et al.,

2019a), Differentiable Average Lagging (Arivazha-

gan et al., 2019) and Average Proportion (Cho and

Esipova, 2016). For direct comparison, we report

the tokenized latency metrics, but we provide the

detokenized metrics in the appendix.

Figure 1 shows our results for this task. We

generally achieve a better quality-latency tradeoff

2BLEU+case.mixed+lang.de-en+numrefs.1

+smooth.exp+test.wmt15+tok.13a

+version.1.4.3
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as measured by DAL, and a comparable one as

measured by AP and AL. We note also that the

ceiling for quality of ACT is higher than that of

MILk. Whereas MILk loses two BLEU points to

their baseline model even when given full attention

(λ = 0.0), our model would seem to get closer to

the performance of the baseline with decreasing λ.

4.2 Stream Translation

In this set of experiments, we demonstrate our

model’s ability to translate continuous streams of

input with no sentence segmentation. For train-

ing, we use the IWSLT 2020 simultaneous transla-

tion data (which includes all WMT2019 data) with

37.6M sentences total. We choose this dataset be-

cause of a larger amount of document-level data

(3.8M sentences). Because we will use Trans-

former XL-style memory, we depend on as much

contextual data as possible. We evaluate on the

IWSLT tst2010 test set in German to English. On

the source side, we convert to lower case and re-

move all punctuation.

In addition to the baseline normal Transformer

model, we train our model in three steps: First an

offline, sentence-based relative self-attention Trans-

former, then the Transformer XL and finally the

ACT+XL model, each one initializing its parame-

ters on the last one. Both the relative model and the

Transformer XL use the cosine schedule starting

at 2.5 · 10−4 and training for 200k and 40k steps,

respectively. The ACT+XL model uses inverse

square root decay, starting at 4 · 10−5 as above and

trains for 1000 steps. We also experiment with

training ACT+XL directly from the relative model.

We evaluate as before3, treating the test set as a

single sequence. BLEU scores are calculated by

re-segmenting the output according to the original

reference based on Word Error Rate (Matusov et al.,

2005). All reported metrics are detokenized. The

baseline and relative models use beam search, the

others use greedy decoding.

Unfortunately, the range of the λ parameter that

produces sensible results is much more restricted

than for the sentence-based model (see “Analysis”,

below). We report results with λ = 0.25 and 0.3.

Table 1 shows our results. There is a drop of 4

BLEU points when moving to simultaneous trans-

lation, which is similar to our experiments on seg-

mented text. While there is room for improvement,

3BLEU+case.mixed+lang.de-en+numrefs.1

+smooth.exp+iwslt17/tst2010+tok.13a

+version.1.4.3

Model AP AL DAL BLEU

Baseline — — — 32.0

Relative — — — 33.1

XL — — — 34.4

ACT+XL

λ = 0.25 0.5 206 329 30.2

λ = 0.3 0.5 107 180 30.3

ACT+XL directly from relative

λ = 0.25 0.5 222 394 26.4

Table 1: Results for the stream translation experiment

these are promising results, and, to the best of our

knowledge, the first demonstration of unsegmented

end-to-end stream translation.

4.3 Analysis

For the segmented translation, we compare two

different latency schedules in figure 2. Both sched-

ules advance relatively homogenously. This may

indicate that the ACT attention layer needs to be

expanded to extract more grammatical informa-

tion and make more informed decisions on waiting.

Nevertheless, the model produces good results and

we even observe implicit verb prediction as in Ma

et al. (2019a). We also note that the high latency

models’ latency graph tends to describe a curve,

whereas the low latency models tend to uniformly

advance by one token per output token.

This behaviour can be explained by the proper-

ties of Differentiable Average Lagging. The ponder

loss objective that ACT is trained on may seem very

different, but actually produces somewhat similar

gradients to DAL 4, so the model incidentally also

learns a behaviour that optimizes DAL.

DAL is monotonically increasing, i. e. the model

can never “catch up” any delay by WRITing multi-

ple tokens without READing (assuming |y| = |x|).
It achieves the same DAL but with better translation

by always READing one token when it WRITEs.

Therefore, to achieve DAL = k for a given k, the

ideal waiting strategy is wait-k.

In the case of stream translation, we make two

important observations: First, that systems with

λ < 0.25 do not produce acceptable results (BLEU

scores < 10). This is because they fall behind

the input by waiting too much and have to skip

sentences to catch back up. Once an input word

is more than nh tokens behind, it is removed from

4 ∂DAL
∂αn

i

= i−N(i)− 1, ∂ACT
∂αn

i

= −1 for N(i− 1) ≤ i ≤

N(i), else 0
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Figure 2: The same sentence from newstest2015 translated by an ACT system with λ = 0.1 (left) and λ = 0.4
(right). The shading indicates the αn

i
as predicted by the ACT attention module (darker = higher probability), the

black line indicates the hard attention cutoff. The low-latency model approaches the behaviour of a wait-4 model.

Note the (incorrect) attempt of the left model to predict the verb “einbestellt” = “summons”, whereas the right

model takes the first half of the sentence as complete, leaving out the verb.

the memory and if it is not translated by then, it

may be forgotten. Therefore, we found it essential

to train more aggressive latency regimes. On the

other hand, systems with λ > 0.3 sometimes read

too little source information or stop reading new

source words altogether.

Second, that the established latency metrics

do not perform well on the very long sequence

(with our tokenization, the source is 29 317 tokens

long). While on single sentences, an AL score of

4 might indicate quite consistently a lag of around

4 tokens, a manual analysis of the output of our

λ = 0.3 system shows a delay of between 40 and

60 words, quite far away from the automatic met-

rics of AL=107 and DAL=180. Average proportion

in particular breaks down under these conditions

and always reports 0.5.5

5 Conclusion and Future work

We have presented Adaptive Compuation Time

(ACT) for simultaneous machine translation and

demonstrated its ability to translate continuous, un-

segmented streams of input text. To the best of

our knowledge, this is the first end-to-end NMT

model to do so. While stream translation model

still loses a lot of performance compared to the

sentence-based models, we see this as an impor-

tant step towards end-to-end simultaneous stream

5The full output of the λ = 0.3 model can be found here:
https://gist.github.com/felix-schneider/

1462d855808e582aa19307f6b0d576e1

translation.

We see several possibilites for future work on

this model: Training the whole model in one train-

ing rather than the multiple rounds of pre-training

may be possible by gradually introducing the la-

tency loss during training. Perhaps the latency de-

cisions can be improved by adding extra layers to

the ACT attention module.

But most importantly, we believe the model must

be adapted to the speech domain. Recently (see e. g.

Di Gangi et al. (2019)), the Transformer has shown

promising results for speech translation. For a re-

alistic application we believe that a simultaneous

translation model must work with speech input.
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A Segmented Translation Results

λ
Tokenized

AP AL DAL

Baseline 1.0 27.9 27.9

0.0 0.91 15.4 17.3

0.01 0.82 10.4 12.1

0.05 0.79 9.0 10.4

0.1 0.73 6.8 7.9

0.15 0.68 5.1 5.9

0.2 0.66 4.4 5.2

0.25 0.64 3.8 4.7

0.3 0.63 3.5 4.4

0.4 0.62 3.0 4.0

0.5 0.61 2.8 3.8

Table 2: Tokenized metrics for newstest2015 back-

ing figure 1

λ
Detokenized

AP AL DAL BLEU

Baseline 1.0 18.6 18.6 31.6

0.0 0.93 10.4 11.7 30.1

0.01 0.84 7.2 8.5 29.6

0.05 0.81 6.3 7.5 29.3

0.1 0.76 4.9 6.0 28.6

0.15 0.71 3.8 4.8 27.7

0.2 0.69 3.4 4.4 27.0

0.25 0.68 3.0 4.1 26.6

0.3 0.67 2.9 3.9 26.1

0.4 0.66 2.6 3.7 25.6

0.5 0.65 2.4 3.6 25.0

Table 3: Detokenized metrics for newstest2015
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Abstract

This paper describes Edinburgh’s submissions

to the IWSLT2021 multilingual speech trans-

lation (ST) task. We aim at improving multi-

lingual translation and zero-shot performance

in the constrained setting (without using any

extra training data) through methods that en-

courage transfer learning and larger capac-

ity modeling with advanced neural compo-

nents. We build our end-to-end multilingual

ST model based on Transformer, integrating

techniques including adaptive speech feature

selection, language-specific modeling, multi-

task learning, deep and big Transformer, spar-

sified linear attention and root mean square

layer normalization. We adopt data augmenta-

tion using machine translation models for ST

which converts the zero-shot problem into a

zero-resource one. Experimental results show

that these methods deliver substantial improve-

ments, surpassing the official baseline by > 15

average BLEU and outperforming our cascad-

ing system by > 2 average BLEU. Our final

submission achieves competitive performance

(runner up).1

1 Introduction

Although end-to-end (E2E) speech translation (ST)

has achieved great success in recent years, out-

performing its cascading counterpart and deliver-

ing state-of-the-art performance on several bench-

marks (Ansari et al., 2020; Zhang et al., 2020a;

Zhao et al., 2020), it still suffers from the relatively

low amounts of dedicated speech-to-translation par-

allel training data (Salesky et al., 2021). In text-

based machine translation (MT), one solution to

lack of training data is to jointly perform multi-

lingual translation with the benefit of transferring

knowledge across similar languages and to low-

resource directions, and even enabling zero-shot

1Source code and pretrained models are available at
https://github.com/bzhangGo/zero.

translation, i.e. direct translation between language

pairs unseen in training (Firat et al., 2016; Johnson

et al., 2017). However, whether and how to obtain

similar success in very low-resource (and practi-

cal) scenario for multilingual ST with E2E models

remains an open question.

To address this question, we participated in the

IWSLT2021 multilingual speech translation task,

which focuses on low-resource ST language pairs

in a multilingual setup. Apart from supervised

evaluation, the task also offers zero-shot condition

with a particular emphasis where only automatic

speech recognition (ASR) training data is provided

for some languages (without any direct ST parallel

data). The task is organized in two settings: con-

strained setting and unconstrained setting. The

former restricts participants to use the given multi-

lingual TEDx data (Salesky et al., 2021) alone for

experiment; while the latter allows for additional

ASR/ST/MT/others training data. In this paper, we

address the constrained one.

Our E2E multilingual ST model takes Trans-

former (Vaswani et al., 2017) as the backbone, and

follows the adaptive feature selection (AFS) frame-

work (Zhang et al., 2020a,b) as shown in Figure

1. AFS is capable of filtering out uninformative

speech features contributing little to ASR, effec-

tively reducing speech redundancy and improving

ST performance (Zhang et al., 2020a). We adapt

AFS to multilingual ST, and further incorporate

several techniques that encourage transfer learn-

ing and larger capacity modeling, ranging from

language-specific modeling, multi-task learning,

deep and big Transformer, sparsified linear atten-

tion (ReLA) (Zhang et al., 2021b) to root mean

square layer normalization (RMSNorm) (Zhang

and Sennrich, 2019b). Inspired by Zhang et al.

(2020c), we convert the zero-shot translation prob-

lem into a zero-resource one via data augmentation

with multilingual MT models.
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Figure 1: Overview of our xample.
paired with adaptive feature
encoder-decoder model for translation language-specific
after ASR/ST encoder, respecti modeling.
the other ASR modules are frozen translation

We integrate all these methods into one model

for our submission. Our results reveal that:

• These methods are complementary in improv-

ing translation performance, where data aug-

mentation and larger-capacity modeling con-

tribute a lot.

• Low-resource E2E ST benefits greatly from

multilingual modeling; our E2E multilingual

ST performs very well in this task, outper-

forming its cascading counterpart by 2 aver-

age BLEU.

2 Methods

In this section, we elaborate crucial ingredients

in our E2E multilingual ST, which individually

have already been proven successful for ST or

(multilingual) MT. We put them together to im-

prove multilingual ST as shown in Figure 1. Note

all encoder/decoder modules are based on Trans-

former (Vaswani et al., 2017).

2.1 Adaptive Feature Selection

Speech is lengthy and noisy compared to its text

transcription. Also, information in an audio often

distributes unevenly. All these increase the dif-

ficulty of extracting informative speech features.

To solve this issue, researchers resort to methods

compressing and grouping speech features (Salesky

et al., 2019; Gaido et al., 2021). Particularly, Zhang

et al. (2020a) propose adaptive feature selection

(AFS) to sparsify speech encodings by pruning

out those uninformative ones contributing little to

ASR based on L0DROP (Zhang et al., 2020b). Us-

ing AFS, Zhang et al. (2020a) observe significant

performance improvements (> 1 BLEU) with the

removal of ∼84% speech features on bilingual ST.

Our model follows the AFS framework, which

includes three steps: 1) pretraining the ASR

encoder-decoder model; then 2) finetuning the ASR

model with AFS; and 3) training ST model with

the ASR encoder and the AFS module frozen.

2.2 Deep Transformer Modeling

Neural models often benefit from increased mod-

eling capacity, and one way to achieve this is

to deepen the models (He et al., 2015; Zhang

et al., 2020d). However, simply increasing model

depth for Transformer results in optimization fail-

ure, caused by gradient vanishing (Zhang et al.,

2019a). To enable deep Transformer, Zhang et al.

(2019a) propose depth-scaled initialization (DS-

Init) that only requires changing parameter initial-

ization without any architectural modification. DS-

Init successfully helps to train up to 30-layer Trans-

former, substantially improving bilingual and also

massively multilingual translation (Zhang et al.,

2019a, 2020c). We adopt this strategy for all deep

Transformer experiments.

Apart from DS-Init, researchers also find that

changing the post-norm structure to its pre-norm

alternative improves Transformer’s robustness to

deep modeling, albeit slightly reducing qual-

ity (Wang et al., 2019; Zhang et al., 2019a). We
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keep using post-norm Transformer for most mod-

ules but apply the pre-norm structure to the ASR

encoder to stabilize the encoding of speeches from

different languages.

2.3 Language-Specific Modeling

Analogous to multi-task learning, multilingual

translation benefits from inter-task transfer learn-

ing but suffers from task interference. How to

balance between shared modeling and language-

specific (LS) modeling so as to maximize the trans-

fer effect and avoid the interference remains chal-

lenging. A recent study suggests that scheduling

language-specific modeling to top and/or bottom

encoder/decoder sub-layers benefits translation the

most (Zhang et al., 2021a), resonating with the

findings of Zhang et al. (2020c). In particular,

Zhang et al. (2020c) propose language-aware lin-

ear transformation, a language-specific linear map-

ping inserted in-between the encoder and the de-

coder which greatly improves massively multilin-

gual translation.

We adopt such language-specific linear mapping

and apply it to both ASR and ST encoders. We

ground such modeling in the ASR and ST encoder

to the source and target language, respectively.

Following multilingual translation (Johnson et al.,

2017; Gangi et al., 2019; Inaguma et al., 2019), we

adopt language embedding (such as “[en], [es]”)

but add it to the inputs rather than appending an

extra token.

2.4 Sparsified Linear Attention

Attention, as the key component in Transformer,

takes the main responsibility to capture token-wise

dependencies. However, not all tokens are seman-

tically correlated, inspiring follow-up studies on

sparsified attention that could explicitly zero-out

some attention probabilities (Peters et al., 2019;

Zhang et al., 2021b). Recently, Zhang et al. (2021b)

propose rectified linear attention (ReLA) which

directly induces sparse structures by enforcing

ReLU activation on the attention logits. ReLA has

achieved comparable performance on several MT

tasks with the advantage of high computational ef-

ficiency against the sparsified softmax models (Pe-

ters et al., 2019).

Results on MT show that ReLA delivers bet-

ter performance when applied to Transformer de-

coder (Zhang et al., 2021b). We follow this prac-

tice and apply it to the ST decoder. Our study also

demonstrates that ReLA generalizes well to ST.

2.5 Root Mean Square Layer Normalization

Layer normalization (LayerNorm) stabilizes net-

work activations and improves model perfor-

mance (Ba et al., 2016), but raises non-negligible

computational overheads reducing net efficiency,

particularly to recurrent models (Zhang and Sen-

nrich, 2019a). To overcome such overhead, Zhang

and Sennrich (2019b) propose root mean square

layer normalization (RMSNorm) which relies on

root mean square statistic alone to regularize ac-

tivations and is a drop-in replacement to Layer-

Norm. RMSNorm yields comparable performance

to LayerNorm in a series of experiments (Zhang

and Sennrich, 2019b) and show great scalability in

large-scale pretraining (Narang et al., 2021).

We apply RMSNorm to the ST encoder and de-

coder, which benefits the training of deep and big

Transformers.

2.6 Data Augmentation

Data augmentation (DA) is an effective strategy for

low-resource tasks by increasing the training cor-

pus with pseudo-labelled samples (Sennrich et al.,

2016a; Zhang and Zong, 2016). Methods for gen-

erating such samples vary greatly, and we adopt

the one following knowledge distillation (Kim and

Rush, 2016). Note, prior to our study, knowledge

distillation has already been successfully applied to

ST tasks (Liu et al., 2019; Gaido et al., 2020). We

regard the multilingual MT as the teacher since text-

based translation is much easier than and almost

upper-bounds the speech-based counterpart (Zhang

et al., 2020a), and transfer its knowledge into our

multilingual ST (student).

Concretely, we first train a multilingual MT

model and then use it to translate each source

transcript into all possible ST directions, includ-

ing the zero-shot ones, based on beam search

algorithm. We directly concatenate the gener-

ated pseudo speech-translation pairs with the orig-

inal training corpus for multilingual ST training.

This will convert the zero-shot translation problem

into a zero-resource one for ST, which has been

demonstrated effective in massively multilingual

MT (Zhang et al., 2020c).

2.7 Multi-Task Learning

Multi-task learning aims at improving task perfor-

mance by jointly modeling different tasks within

one framework. Particularly, when tasks are of high

correlation, they tend to benefit each other and de-
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Speech
Target Languages

En Es Fr Pt It

Es 36K/102K 102K/- 3.6K/102K 21K/102K 5.6K/102K

Fr 30K/116K 21K/116K 116K/- 13K/116K -/116K

Pt 31K/90K -/90K -/90K 90K/- -/90K

It -/50K -/50K -/50K -/50K 50K/-

Table 1: Statistics for ST training data used for the
IWSLT2021 multilingual ST task. “-”: denotes no data avail-
able. “a/b”: “a” denotes genuine data while “b” is for aug-
mented data.

liver positive knowledge transfer. With datasets of

different tasks combined, this also partially allevi-

ates data scarcity.

We adopt multi-task learning by augmenting

translation tasks with transcription tasks. We in-

corporate the ASR tasks for multilingual ST, and

auto-encoding tasks (transcript-to-transcript in the

same language) for multilingual MT.

3 Experimental Settings

In this section, we explain the used datasets, model

architectures, optimization details and evaluation

metrics in our experiments. All implementations

are based on the zero2 toolkit (Zhang et al., 2018).

Data We participate in the constrained setting,

where only the provided data, i.e. Multilingual

TEDx (Salesky et al., 2021), is permitted. Mul-

tilingual TEDx collects audios from TEDx talks

in 8 source languages (Spanish/Es, French/Fr, Por-

tuguese/Pt, Italian/It, Russian/Ru, Greek/El, Ara-

bic/Ar, German/De) paired with their manual tran-

scriptions, covering translations into 5 target lan-

guages (English/En, Es, Fr, Pt, It). It contains

supervised training data for 13 ST directions, three

of which (Pt-Es, It-En, It-Es) are masked-out for

zero-shot evaluation. ASR training data is given

for all 8 source languages. Overall, Multilingual

TEDx is a small-scale dataset, whose ST training

data size ranges from 5K utterances (It-Es) to at

most 39K utterances (Es-En). Thus, studying and

improving transfer across different languages is of

great significance. The IWSLT2021 task requires

participants to model translations from 4 source

languages (Es, Fr, Pt, It), where the final evaluation

only targets translations into En and Es. The statis-

tics of ST (genuine and augmented) training data

are shown in Table 1.

Regarding audio preprocessing, we use the given

audio segmentation (train/dev/test) for experiments.

We extract 40-dimensional log-Mel filterbanks with

2https://github.com/bzhangGo/zero

a step size of 10ms and window size of 25ms as the

acoustic features, followed by feature expansion

via second-order derivatives and mean-variance

normalization. The final acoustic input is 360-

dimensional, a concatenation of the features corre-

sponding to three consecutive and non-overlapping

frames. We tokenize and truecase all text data us-

ing Moses scripts (Koehn et al., 2007). We adopt

subword processing (Sennrich et al., 2016b) with

8K merging operations (Sennrich and Zhang, 2019)

on these texts to handle rare words. Note we use

different subword models (but with the same vo-

cabulary size) for ST, ASR and MT.

Architecture The architecture for ASR and ST

is illustrated in Figure 1, while our MT model fol-

lows Zhang et al. (2020c). We apply AFS to ASR

encoder outputs (after language-specific mapping)

along both temporal and feature dimensions. By de-

fault, we adopt Transformer-base setting (Vaswani

et al., 2017): we use 6 encoder/decoder layers

and 8 attention heads with a model dimension of

512/2048. For deep Transformer, we equally in-

crease the encoder and decoder depth, and adopt

DS-Init for training. We also use Transformer-big

for ST, where the number of attention heads and

model dimension are doubled, increased to 16 and

1024/4096, respectively.

Optimization We train MT models with the max-

imum likelihood objective (LMLE). Apart from

LMLE, we also incorporate the CTC loss (Graves

et al., 2006) for ASR pretraining with a weight

value of 0.3 following Zhang et al. (2020a). During

AFS finetuning, the CTC loss is discarded and re-

placed with the L0DROP sparsification loss (Zhang

et al., 2020b) weighted by 0.5. We employ label

smoothing of value 0.1 for LMLE.

We adopt Adam (β1=0.9, β2=0.98) for parameter

tuning with a warmup step of 4K. We train all

models (ASR, ST and MT) for 100K steps, and

finetune AFS for 10K steps. We group instances of

around 25K target subwords into one mini-batch.

We apply dropout to attention weights and residual

connections with a rate of 0.1 and 0.2, respectively.

Dropout rate on residual connections is increased

to 0.3 for ST big models to avoid overfitting, and

to 0.5 for MT models inspired by low-resource

MT (Sennrich and Zhang, 2019). Except dropout,

we use no other regularization techniques. We use

beam search for decoding, and set the beam size

and length penalty to 4 and 0.6, separately. The
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Bilingual Models⋆ 25.5 39.3 2.0 28.3 30.5 19.0 27.9 29.9 18.9 1.0 22.23

Multilingual Models⋆ 24.6 37.3 18.1 28.2 32.1 30.6 28.8 38.4 20.9 25.1 28.41

Our Multilingual MT

+ 6 layers 28.7 42.1 29.3 33.6 38.3 36.7 33.2 42.9 20.3 32.7 33.78

+ 12 layers 31.8 44.7 31.7 36.4 40.9 39.9 35.6 44.0 23.0 34.9 36.29

+ 24 layers 32.8 44.9 32.4 37.3 41.8 40.7 36.8 43.2 23.2 35.3 36.84

Ablation Study

+ 6 layers w/o LS layer 28.6 41.8 29.0 33.7 38.2 36.3 33.2 42.5 20.7 32.6 33.66

+ 6 layer + RoBT 28.1 40.3 28.6 34.1 38.3 33.6 33.6 42.7 21.1 32.9 33.33

Table 2: SacreBLEU↑ for MT on Multilingual TEDx testsets. ⋆: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. In spite of this unfairness, our model still
substantially outperforms the supervised baseline (Salesky et al., 2021) by a large margin, +8.43 BLEU. RoBT: random online
back-translation (Zhang et al., 2020c). Best average BLEU is highlighted in bold. Columns in red denote zero-shot evaluation.

Model Es Fr Pt It Ru El Ar De Avg

Hybrid LF-MMI⋆ 16.2 19.4 20.2 16.4 28.4 25.0 80.8 42.3 31.09
Transformer⋆ 46.4 45.6 54.8 48.0 74.7 109.5 104.4 111.1 74.31

Our Multilingual ASR
+ 6 layers 17.6 19.5 23.1 20.8 39.8 33.0 104.3 57.8 39.49

Ablation Study
+ 6 layers w/o LS layer 18.0 19.5 23.2 21.6 40.8 35.2 97.8 62.6 39.84

Table 3: WER↓ for ASR on Multilingual TEDx testsets. ⋆: results reported by Salesky et al. (2021). Best results are highlighted
in bold.

model used for evaluation is averaged over the last

5 checkpoints.

Note, while the training data size varies across

languages, we follow the original data distribution

and adopt no specific sampling strategies for all

multilingual experiments.

Evaluation We evaluate translation quality us-

ing tokenized case-sensitive (Sacre)BLEU (Pap-

ineni et al., 2002; Post, 2018), and report WER for

ASR performance without punctuation on lower-

cased text. In ST experiments, we observe some

repeated translations decreasing BLEU. We auto-

matically post-process translations by removing

repeated chunks of up to 10 words.

4 Results

4.1 Multilingual MT

Table 2 shows the results for text-based translation.

Our best model, achieved with 24 layers, largely

surpasses the official baseline (Salesky et al., 2021)

by > 8 average BLEU. With 6 layers, our model

still largely surpasses this baseline by 5.37 average

BLEU, suggesting the superiority of our model.

Increasing model depth greatly benefits multilin-

gual MT (+2.51 average BLEU, 6 layers → 12 lay-

ers), even though the dataset is small. Note the ben-

efit from increased depth diminishes as the depth

goes larger (+0.55 average BLEU, 12 layers → 24

layers). We find that language-specific modeling

slightly improves translation performance (+0.12

average BLEU). Such improvement seems unin-

teresting particularly compared to the significant

gains on massively multilingual MT (Zhang et al.,

2020c), but we ascribe this to the high language

similarity in Multilingual TEDx and the relative

small number of languages. We also confirm the

effectiveness of random online back-translation

(RoBT), which improves zero-shot translation via

pseudo sentence pair augmentation (Zhang et al.,

2020c). Table 2 shows that RoBT indeed benefits

zero-shot translation, but sacrifices overall quality

(-0.45 average BLEU).

Overall, our results reveal very positive transfer

between these languages, and also great zero-shot

translation performance. This is an encouraging

finding for multilingual ST. We use our 24-layer

model for data augmentation distillation in the fol-

lowing ST experiments.
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Multilingual Models⋆ 12.3 17.4 6.1 12.0 13.6 13.2 12.0 13.7 10.7 13.1 12.41

Cascades with Multilingual MT⋆ 21.5 26.5 23.4 25.3 26.9 23.3 22.3 26.3 21.9 28.4 24.58

Our Multilingual MT, w/ AFS, LS layer, DA, ReLA (decoder self-attention) and RMSNorm

+ 6 layers 24.9 34.8 26.6 30.0 33.8 33.2 27.4 33.9 20.7 30.8 29.61

+ 12 layers 24.6 35.6 26.7 29.9 33.7 33.5 28.5 34.4 21.1 30.6 29.86

+ 6 layers + big model 26.1 36.2 27.5 31.0 34.9 34.3 28.7 35.1 21.6 31.5 30.69

Ablation Study

+ 6 layers w/o AFS 25.2 35.1 26.4 29.9 33.2 32.7 28.4 33.7 20.3 29.6 29.45

+ 6 layers w/o AFS & DA 20.8 30.9 18.5 24.7 27.6 27.0 23.8 27.2 13.8 20.0 23.43

+ 6 layers w/o ReLA & RMSNorm 24.2 34.8 26.4 29.5 34.1 33.4 27.5 33.7 20.7 30.3 29.46

+ 6 layers + ReLA on cross-att. 24.8 35.3 27.1 30.2 34.3 33.8 27.6 34.1 20.5 30.5 29.82

Our Cascade Model w/ Multilingual ASR + 24-layer Multilingual MT

24.8 33.7 25.3 29.2 32.7 32.2 26.9 31.7 18.5 27.1 28.21

Final Submission: Ensemble of 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9

26.6 36.6 27.9 31.8 35.6 35.4 29.7 35.8 22.0 32.0 31.34

Table 4: SacreBLEU↑ for ST on Multilingual TEDx testsets. ⋆: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. Our model substantially outperforms the official
baseline (Salesky et al., 2021) by > 10 average BLEU. DA: data augmentation. Best average BLEU is highlighted in bold.

4.2 Multilingual ASR

Table 3 shows the ASR performance. Following

previous studies (Salesky et al., 2021; Zhang et al.,

2020a), we experiment with the Transformer base

setting. Our multilingual ASR model yields an

average WER of 39.49, substantially outperform-

ing the official baseline (Salesky et al., 2021) by

34.82 and narrowing the performance gap against

the hybrid model to ∼ 8 WER. Note lower WER in-

dicates better quality. We ascribe this large quality

gain to the dedicated multilingual ASR model ar-

chitecture, the better optimization, and particularly

the incorporation of the CTC objective.

Removing the language-specific layer slightly

hurts recognition performance (+0.35 average

WER). It largely benefits ASR for Ar (-6.5 WER),

but hurts that for De (+4.8 WER), showing the diffi-

culty of multilingual modeling: it’s hard to balance

between different tasks (translation directions). We

adopt the model with language-specific projection

for AFS and ST.

Notice that we still include Ru, El, Ar and De for

the ASR training, although they are not a part of

the evaluation campaign. We regard this inclusion

as some sort of model regularization: the extra

training data could reduce overfitting and might

enable potential cross-lingual transfer.

4.3 Multilingual ST

Table 4 summarizes the ST results. Our base

model using 6 layers delivers an average BLEU

of 29.61, largely outperforming the official base-

line (Salesky et al., 2021) by ∼ 17 BLEU and also

beating their cascading baseline. In a fair compar-

ison where knowledge data augmentation is not

used, our model still obtain an average BLEU of

23.43.

Increasing the ST model depth slightly improves

quality (+0.25 average BLEU), while enlarging ST

model yields a larger improvement, reaching 1.08.

Although it’s widely known that large neural model

often suffers from overfitting in low-resource tasks,

our results suggest that such model still gains qual-

ity with proper regularization (AFS, larger dropout,

etc).

Our ablation study demonstrates the effective-

ness of AFS, ReLA and RMSNorm, although the

corresponding quality gains are marginal. In par-

ticular, we observe that applying ReLA to both

self-attention and cross-attention in the ST decoder

helps (Zhang et al., 2021b). AFS improves training

efficiency, allowing larger batch size thus fewer

gradient accumulation steps (Zhang et al., 2020a).

Besides, data augmentation benefits multilingual

ST very much, resulting in ∼ 6 average BLEU im-

provement, and the gain on zero-shot directions is

even higher, + 7.54 BLEU. Thus, we mainly as-

cribe our success on zero-shot translation to the

inclusion of pseudo parallel corpora – data mat-

ter! – which converts the zero-shot problem into a

zero-resource one.

Our E2E model also largely outperforms the

cascading system (+ 2.48 average BLEU). Notice

that our cascading system is sub-optimal, since we
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Model Es-En Es-Fr Es-It Es-Pt Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Ensemble of 6 E2E models: 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9

36.2 30.3 32.9 44.5 26.4 29.5 30.1 27.0 34.5 23.0 31.1 31.41

Cascading model: base ASR model + 24-layer MT model

33.3 26.8 28.6 39.9 23.7 26.9 26.8 23.6 30.0 19.7 26.7 27.82

Single E2E Model: multilingual ST model + 6 layers, big Transformer

35.0 29.9 31.9 44.1 25.5 28.8 29.0 26.2 33.3 22.4 30.1 30.56

Table 5: SacreBLEU↑ for our submissions to the IWSLT2021 multilingual ST task.

didn’t bias our MT model towards ASR outputs,

and the mismatch between gold transcripts and

ASR outputs often hurts cascading performance.

Recent advances on avoiding such error propaga-

tion might deliver better cascading results (Cheng

et al., 2018; Zhang et al., 2019b; Cheng et al., 2019;

Sperber et al., 2019).

Our final submission is an ensemble of 6 E2E

multilingual ST models, which reaches an average

BLEU of 31.34. Apart from the ensemble, we also

increase the decoding length penalty from 0.6 to

0.9, which performs slightly better.

5 Submission Results

The IWSLT2021 task prepares a held-out test set

for the final evaluation. We submitted three sys-

tems: one cascading system, one E2E single model

(w/ big ST Transformer) and one ensemble model.

Results are shown in Table 5: our E2E multilingual

ST model outperforms its cascading counterpart,

and the ensemble model reaches the best perfor-

mance. Our submission achieves runner-up results

among all participants.

6 Conclusion and Future Work

We describe Edinburgh’s end-to-end multilingual

speech translation system for the IWSLT2021 mul-

tilingual speech translation task. We observe sub-

stantial performance improvement using larger-

capacity modeling (deep or big modeling) and data

augmentation. In spite of the scarcity of the train-

ing data, we show that E2E models benefit greatly

from multilingual modeling and deliver promis-

ing results on zero-shot translation directions (even

without data augmentation). Our E2E multilingual

ST greatly surpasses its cascading counterpart.

Regarding future study, we argue that exploring

the multilingual transfer behavior should be very

practical and promising to ST. This work mainly

studies transfer across similar languages. How the

current model generalizes to distant languages is

still an open question. Besides, a general trend for

deep learning is to increase the model capacity via

deep and/or big modeling. However, deep models

for ST seem to be ineffective. Identifying the rea-

son for this and proposing simple solutions would

be of high interest.
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Abstract

Document-level contextual information has

shown benefits to text-based machine transla-

tion, but whether and how context helps end-

to-end (E2E) speech translation (ST) is still

under-studied. We fill this gap through exten-

sive experiments using a simple concatenation-

based context-aware ST model, paired with

adaptive feature selection on speech encodings

for computational efficiency. We investigate

several decoding approaches, and introduce in-

model ensemble decoding which jointly per-

forms document- and sentence-level transla-

tion using the same model. Our results on the

MuST-C benchmark with Transformer demon-

strate the effectiveness of context to E2E ST.

Compared to sentence-level ST, context-aware

ST obtains better translation quality (+0.18-

2.61 BLEU), improves pronoun and homo-

phone translation, shows better robustness to

(artificial) audio segmentation errors, and re-

duces latency and flicker to deliver higher qual-

ity for simultaneous translation.1

1 Introduction

Document-level context often offers extra informa-

tive clues that could improve the understanding of

individual sentences. Such clues have been proven

effective for textual machine translation (MT), par-

ticularly in handling translation errors specific to

discourse phenomena, such as inaccurate corefer-

ence of pronouns (Guillou, 2016) and mistransla-

tion of ambiguous words (Rios et al., 2017). Be-

sides, ensuring consistency in translation is virtu-

ally impossible without document-level context as

well (Voita et al., 2019). Analogous to MT, speech

translation (ST) also suffers from these translation

issues, and super-sentential context could in fact

be more valuable to ST because 1) homophones

1Source code is available at https://github.com/
bzhangGo/zero.

Figure 1: Overview of the concatenation-based context-
aware ST. yn denotes the n-th target sentence in a document;
x
n denotes the speech encodings extracted from the n-th audio

segment. We use dashed gray box to indicate the concatenation
operation. “<s>”: sentence separator symbol.

and acoustic noise bring additional ambiguity to

ST, and 2) a common use case in ST is simulta-

neous translation, where the system has to output

translations of sentence fragments, and may have

to predict future input to account for word order

differences between the source and target language

(Grissom II et al., 2014). Both for ambiguity from

the acoustic signal, and operating on small sentence

fragments, we hypothesize that access to extra con-

text2 will be beneficial.

Although recent studies on ST have achieved

promising results with end-to-end (E2E) mod-

els (Anastasopoulos and Chiang, 2018; Di Gangi

et al., 2019; Zhang et al., 2020a; Wang et al., 2020;

Dong et al., 2020), nevertheless, they mainly focus

on sentence-level translation. One practical chal-

lenge when scaling up sentence-level E2E ST to the

document-level is the encoding of very long audio

segments, which can easily hit the computational

bottleneck, especially with Transformers (Vaswani

et al., 2017). So far, the research question of

whether and how contextual information benefits

E2E ST has received little attention.

In this paper, we answer this question through ex-

tensive experiments by exploring a concatenation-

2By default, we use context to denote both source- and
target-side information from previous sentences.
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based context-aware ST model. Figure 1 illus-

trates our model, where neighboring source (tar-

get) sequences are chained together into one se-

quence for joint translation. This paradigm only

requires data-level manipulation, thus allowing us

to reuse any existing sentence-level E2E ST models.

Despite its simplicity, this approach successfully

leverages contextual information to improve textual

MT (Tiedemann and Scherrer, 2017; Bawden et al.,

2018; Lopes et al., 2020), and here we adapt it to ST.

As for the computational bottleneck, we shorten

the speech encoding sequence via adaptive feature

selection (Zhang et al., 2020b,a, AFS), which only

retains a small subset of encodings (∼16%) for

each audio segment.

We investigate several decoding methods, in-

cluding chunk-based decoding and sliding-window

based decoding. We also study an extension of

the latter with the constraint of target prefix, where

the prefix denotes the translation of previous con-

text speeches. We find that using these methods

sometimes results in misaligned translations, par-

ticularly when using the constraint. This issue

manifests itself in mismatching sentence bound-

aries and producing over- and/or under-translation,

which greatly hurts sentence-based evaluation met-

rics. To avoid such misalignments, we introduce in-

model ensemble decoding (IMED) to regularize the

document-level translation with its sentence-level

counterpart. Note that we use the same context-

aware ST model here for both types of translation –

that’s why we call it in-model ensemble.

We adopt Transformer (Vaswani et al., 2017) for

experiments with the MuST-C dataset (Di Gangi

et al., 2019). We study the impact of context on

translation in different settings. Our results demon-

strate the effectiveness of contextual modeling. Our

main findings are summarized below:

• Incorporating context improves overall trans-

lation quality (+0.18-2.61 BLEU) and benefits

pronoun translation across different language

pairs, resonating with previous findings in tex-

tual MT (Miculicich et al., 2018; Huo et al.,

2020). In addition, context also improves the

translation of homophones.

• ST models with contexts suffer less from (ar-

tificial) audio segmentation errors.

• Contextual modeling improves translation

quality and reduces latency and flicker for

simultaneous translation under re-translation

strategy (Arivazhagan et al., 2020a).

2 Related Work

Our work is inspired by pioneer studies on context-

aware textual MT. Context beyond the current sen-

tence carries information whose importance for

translation cohesion and coherence has long been

posited (Hardmeier et al., 2012; Xiong and Zhang,

2013). With the rapid development of neural MT

and also available document-level textual datasets,

research in this direction gained great popular-

ity. Recent efforts often focus on either advanced

contextual neural architecture development (Tiede-

mann and Scherrer, 2017; Kuang et al., 2018; Mi-

culicich et al., 2018; Zhang et al., 2018, 2020c;

Kang et al., 2020; Chen et al., 2020; Ma et al.,

2020a; Zheng et al., 2020) and/or improved analy-

sis and evaluation targeted at specific discourse

phenomena (Bawden et al., 2018; Läubli et al.,

2018; Guillou et al., 2018; Voita et al., 2019; Kim

et al., 2019; Cai and Xiong, 2020). We follow this

research line, and adapt the concatenation-based

contextual model (Tiedemann and Scherrer, 2017;

Bawden et al., 2018; Lopes et al., 2020) to ST. Our

main interest lies in exploring the impact of context

on ST. Developing dedicated contextual models for

ST is beyond the scope of this study, which we

leave to future work.

Context-aware ST extends the sentence-level ST

towards streaming ST which allows models to ac-

cess unlimited previous audio inputs. Instead of

improving contextual modeling, many studies on

streaming ST aim at developing better sentence/-

word segmentation policies to avoid segmenta-

tion errors that greatly hurt translation (Matusov

et al., 2007; Rangarajan Sridhar et al., 2013; Iranzo-

Sánchez et al., 2020; Zhang and Zhang, 2020; Ari-

vazhagan et al., 2020b). Very recently, Ma et al.

(2020b) proposed a memory augmented Trans-

former encoder for streaming ST, where the previ-

ous audio features are summarized into a growing

continuous memory to improve the model’s context

awareness. Despite its success, this method ignores

the target-side context, which turns out to have sig-

nificant positive impact on ST in our experiments.

Our study still relies on oracle sentence segmen-

tation of the audio. The most related work to ours

is (Gaido et al., 2020), which also investigated con-

textualized translation and showed that context-

aware ST is less sensitive to audio segmentation

errors. While they exclusively focus on the robust-

ness to segmentation errors, our study investigates

the benefits of context-aware E2E ST more broadly.
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(a) CBD (b) SWBD

(c) SWBD-Cons (d) IMED

Figure 2: Illustration of different decoding methods: chunk-based decoding (CBD, 2a), sliding-window based decoding without
(SWBD, 2b) and with (SWBD-Cons, 2c) the target prefix constraint and the proposed in-model ensemble decoding (IMED, 2d).
The dashed blue box denotes model generation; the solid gray box (2c, 2d) indicates the target prefix constraint; sentences in the
gray rectangle (2b) are discarded after generation. The dashed arrow in IMED stands for the sentence-level translation.

3 Context-aware ST via Concatenation

We extend the sentence-level ST with document-

level context, by modeling up to C previous

source/target segments/sentences for translation.

Formally, given a pre-segmented audio (source doc-

ument) A =
(

a1, . . . ,aN
)

as well as its paired

target document Y =
(

y1, . . . ,yN
)

, the model is

trained to maximize the following likelihood:

log p (Y|A) =

N
∑

n=1

log p
(

yn|xn, Cn
y
, Cn

x

)

, (1)

where xn = AFS (an), i.e. the speech encod-

ings extracted via AFS (Zhang et al., 2020a). an

and yn denote the n-th audio segment and target

sentence, respectively. N is the number of seg-

ments/sentences in the document. Cn
x

and Cn
y

stand

for the source and target context, respectively, i.e.

{xn−i}Ci=1
and {yn−i}Ci=1

.

Adaptive Feature Selection Audio segment is

often converted into frame-based features for neu-

ral modeling. Different from text, each segment

might contain hundreds or even thousands of such

features, making contextual modeling computation-

ally difficult. Zhang et al. (2020a) found that most

speech encodings emitted by a Transformer-based

audio encoder carry little information for transla-

tion, and their deletion even improves translation

quality. We follow Zhang et al. (2020a) and per-

form AFS to only extract those informative encod-

ings (∼16%) optimized via sentence-level speech

recognition with L0DROP (Zhang et al., 2020b).

This greatly shortens the speech encoding sequence,

thus enabling broader context exploration.

Concatenation-based Contextual Modeling

We adopt the concatenation method to incorporate

the previous context (Cn
x

/Cn
y

) (Tiedemann and

Scherrer, 2017; Bawden et al., 2018) as shown in

Figure 1. After obtaining the AFS-based encodings

(xn) for each audio segment, we concatenate those

encodings of neighboring segments to form the

source input. The same is applied to the target-side

sentences, except for a separator symbol “<s>”

inserted in-between sentences to distinguish

sentence boundaries.3 Such modeling enables us to

use arbitrary encoder-decoder models for context-

aware ST, such as the Transformer (Vaswani et al.,

2017) used in this paper. Despite no dedicated

hierarchical modeling (Miculicich et al., 2018), this

paradigm still allows for intra- and inter-sentence

attention during encoding and decoding, which

explicitly utilizes context for translation and has

been proven successful (Lopes et al., 2020).

4 Inference

Concatenation-based contextual modeling allows

for different inference strategies with possible

trade-offs between simplicity/efficiency and accu-

racy. We investigate the following inference strate-

gies (see Figure 2):

Chunk-based Decoding (CBD) CBD splits all

audio segments in one document into non-

overlapping chunks, with each chunk concatenat-

ing C + 1 segments, as shown in Figure 2a. CBD

directly translates each chunk, and then recovers

sentence-level translation via the separator symbol

“<s>”. CBD is the most efficient inference strat-

egy, only encoding/decoding each sentence once,

but it might suffer from misaligned translation,

3Note that we did not add similar boundary information to
audio segments, because AFS implicitly captures these signals
through independent segment encoding.
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producing more or fewer sentences than the input

segments. We simply drop the extra generated sen-

tences and replace the missing ones with “<unk>”

when computing sentence-based evaluation metrics.

Also, CBD introduces an independence assumption

between chunks.

Sliding Window-based Decoding (SWBD)

SWBD avoids such inter-chunk independence

by sequentially translating each audio segment

(xn), together with its corresponding previous

source context (Cn
x

). We distinguish two variants

of SWBD. The first variant, SWBD, translates

the concatenated segments and regards the last

generated sentence as the translation of the current

segment while discarding all other generations

(Figure 2b). Note that this might introduce

inconsistencies between the output produced at a

time step, and the one used as target context in

future time steps. By contrast, the second variant,

SWBD-Cons, leverages the previously generated

(up to C) sentences as a decoding constraint, based

on which the model only needs to generate one

sentence (Figure 2c).

In-Model Ensemble Decoding (IMED) We ob-

serve that SWBD still suffers from misaligned

translation, where the translation of the current seg-

ment might contain information from previous seg-

ments. We introduce IMED to alleviate this issue as

shown in Figure 2d. IMED extends SWBD-Cons

by interpolating the document-level prediction (pd)

with the sentence-level prediction (ps) as follows:

λpsθ (y
n
t |y

n
<t,x

n) + (1− λ)pdθ (y
n
t |C) , (2)

where C = {Cn
x
, Cn

y
,xn,yn

<t}, λ is a hyperparam-

eter, yn
t denotes the t-th target word in sentence

yn, and both predictions are based on the same

model θ. Intuitively, the sentence-level translation

acts as a regularizer, avoiding the over- or under-

translation. Note IMED with λ = 0 corresponds to

SWBD-Cons.

5 Experiments

5.1 Setup

We use the MuST-C dataset (Di Gangi et al., 2019)

for experiments, which was collected from English

TED talks and covers translations from English

to 8 different languages, including German (De),

Spanish (Es), French (Fr), Italian (It), Dutch (Nl),

Portuguese (Pt), Romanian (Ro) and Russian (Ru).

MuST-C offers a standard training, development

and test set split for each language pair, with each

dataset consisting of English audio, English tran-

scriptions and their translations. Each training set

contains transcribed speeches of ∼452 hours with

∼252K utterances on average. We report results on

tst-COMMON, whose size ranges from 2502 (Es)

to 2641 (De) utterances. We perform our major

study on MuST-C En-De.

To construct acoustic features, for each audio

segment, we extract 40-channel log-Mel filterbanks

using overlapping windows of 25 ms and step

size of 10 ms. We enrich these features with

their first and second-order derivatives, followed

by mean subtraction and variance normalization.

Following Zhang et al. (2020a), we perform non-

overlapping feature stacking to combine the fea-

tures of three consecutive frames. All the texts are

tokenized and truecased (Koehn et al., 2007), with

out-of-vocabulary words handled by BPE segmen-

tation (Sennrich et al., 2016), using 16K merging

operations.

Model Settings and Evaluation Our context-

aware ST follows Transformer base (Vaswani et al.,

2017): 6 layers, 8 attention heads, and hidden/feed-

forward size 512/2048. We use Adam (β1 =
0.9,β2 = 0.98) (Kingma and Ba, 2015) for pa-

rameter updates with label smoothing of 0.1. We

use the same learning rate schedule as Vaswani et al.

(2017) and set the warmup step to 4K. We apply

dropout to attention weights and residual connec-

tions with a rate of 0.2 and 0.5, respectively. By de-

fault, we set C = 2 and λ = 0.5. Following (Zhang

et al., 2020a), we apply AFS(ǫ = −0.1, β = 2/3)
to both temporal and feature dimensions for fea-

ture selection, which prunes out ∼84% speech en-

codings. We initialize our context-aware ST with

the sentence-level Baseline, i.e. ST+AFS, and then

finetune the model for 20K steps based on the con-

catenation method with a batch size of around 40K

subwords.4 We adopt beam search for decoding,

with a beam size of 4 and length penalty of 0.6. We

average the last 5 checkpoints for evaluation.

We measure general translation quality with tok-

enized case-sensitive BLEU (Papineni et al., 2002)

and also report the detokenized one via sacre-

BLEU (Post, 2018)5 for cross-paper comparison.

We calculate BLEU based on sentences unless oth-

4Our experiments show that such initialization eases the
learning of long inputs and improves the convergence of
context-aware ST.

5signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.3.6
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ID Model BLEU APT

1 Baseline (ST+AFS) 22.38 (27.40) 60.77

2 Ours + CBD 22.72 (27.95) 62.31
3 Ours + SWBD 22.70 (28.02) 62.83
4 Ours + SWBD-Cons 22.11 (27.98) 60.94
5 Ours + IMED 22.86 (28.03) 62.56

6 1 + 20K-step finetuning 22.02 (27.00) 61.58
7 5 + λ = 1.0 22.42 (27.62) 61.96

8 1 + lp = 1.0 22.71 (27.77) 61.89
9 3 + lp = 1.0 22.97 (28.29) 63.51
10 5 + lp = 1.0 22.94 (28.11) 62.76

11 3 w/o C
n
y 21.12 (26.17) 59.51

12 5 w/o C
n
y 20.72 (25.43) 58.18

13 3 w/o Baseline Initial. 21.75 (27.15) 62.29
14 5 w/o Baseline Initial. 21.97 (27.20) 62.08

Table 1: Case-sensitive tokenized BLEU and APT for dif-
ferent models and settings on MuST-C En-De test set. Num-
bers in bracket denote document-based BLEU. lp: the length
penalty for beam search decoding. “w/o C

n
y ”: models that

are trained without target-side context. Best results are high-
lighted in bold. Note C = 2, λ = 0.5 and lp = 0.6 by default.

erwise specified. We use APT (Miculicich Werlen

and Popescu-Belis, 2017), the accuracy of pronoun

translation, as an approximate proxy for document-

level evaluation. Word alignment required by APT

is automatically extracted via fast align (Dyer et al.,

2013) with the strategy “grow-diag-final-and”.

5.2 Results on MuST-C En-De

Does context improve translation? Yes, but the

decoding method matters for context-aware ST. Ta-

ble 1 summarizes the results. Our model with

IMED outperforms Baseline by +0.48 BLEU (sig-

nificant at p < 0.05)6 and +1.79 APT (1→5),

clearly showing the benefits from contextual model-

ing. Although SWBD-Cons yields worse sentence-

based BLEU (-0.27, 1→4), it still beats Baseline in

document-based BLEU (+0.58) and pronoun trans-

lation (+0.17 APT). The reason behind this inferior

BLEU partially lies in misaligned translation (see

Table 8 in Appendix for example). We observe that

SWBD-Cons sometimes segments its output in a

way that is misaligned to the reference segmenta-

tion. This also hurts CBD, where CBD produces

mismatched sentences for around 1.8% cases. This

is only a problem if we rely on the sentence-level

alignment for BLEU, but not when we measure

document-based BLEU (in brackets), where trans-

lations in one document are concatenated into a

sequence for BLEU calculation. Overall, SWBD

6We perform significance test using bootstrap-hypothesis-
difference-significance.pl in moses (Koehn et al., 2007).

and IMED are more stable and perform the best,

and SWBD surpasses Baseline by 2.06 APT (1→3).

We will proceed with using IMED and SWBD for

more reliable results with APT and later analysis.

Since we finetune our model based on the pre-

trained Baseline, directly comparing with Baseline

might be unfair. To offset its influence, we continue

to train Baseline for the same 20K steps, following

the settings in Section 5.1. Results show that this

extra training (1→6) slightly deteriorates BLEU

(-0.36) and only explains part of the improvement

in APT (+0.81). Therefore, the gain brought by

SWBD and IMED does not come from longer train-

ing. However, we do observe that initializing from

the sentence-level Baseline benefits context-aware

ST, compared to directly training context-aware ST

from the AFS model (13→3, 14→4).

Apart from faster convergence and higher qual-

ity, another benefit of this finetuning is that the

trained context-aware ST still carries the ability

to translate individual sentences. Table 1 shows

that using context-aware ST for sentence-level

translation (1→7) yields similar BLEU to Base-

line (+0.04) but surprisingly much better pronoun

translation (+1.19), although it still underperforms

SWBD and IMED. The fact that we can perform

sentence-level ST using the same context-aware ST

model indicates that it can be useful for ensembling,

as confirmed by the effectiveness of IMED.

Upon closer inspection, we find that context-

aware ST prefers to produce longer translations

than Baseline. To control for the effects of out-

put length on BLEU differences, we experiment

with larger length penalty (lp: 0.6→1.0) to beam

search. Results in Table 1 show that biasing the de-

coding greatly improves sentence-level ST (1→8),

achieving performance on par with context-aware

ST (when lp is 0.6) in terms of BLEU with simi-

lar translation lengths but still falling short of pro-

noun translation (-0.94 APT, 8→3). In addition, we

observe that context-aware ST also benefits from

decoding with larger length penalty, beating all

sentence-level ST models (3→9, 5→10). Particu-

larly, SWBD with lp of 1.0 delivers the best BLEU

of 22.97 and APT of 63.51 (3→9). Note we adopt

lp of 0.6 for the following experiments.

Does target-side context matter for context-

aware ST? Yes, it matters a lot. By default, we

utilize both source- and target-side context for con-

textual modeling. Removing the target-side part

(also at training), as shown in Table 1 (11, 12), sub-
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Model BLEU APT

SWBD 22.70 62.83
SWBD + Random C

n
x 22.31 61.16

IMED 22.86 62.56
IMED + Random C

n
x 21.83 59.95

IMED + Random C
n
y 21.99 60.01

IMED + Random C
n
y & C

n
y 21.76 59.67

Table 2: Case-sensitive tokenized BLEU and APT for
context-aware ST with random source/target context on MuST-
C En-De test set. We report average performance over three
runs with different random seeds. C = 2,λ = 0.5. Incorrect
context hurts our model.

stantially weakens translation quality, even leading

to worse performance than Baseline. Apart from

offering direct target-side translation clues, we ar-

gue that the target-side context also enforces the

context-aware ST to utilize the source-side context

for translation, thus benefiting its training. This

observation echoes with several previous studies

on textual translation (Bawden et al., 2018; Huo

et al., 2020; Lopes et al., 2020).

Does the model learn to utilize context? Yes.

We answer this question by studying the impact

of incorrect context on our model. We replace the

correct source context with some random audio

segments from the same document, and randomly

select the target context from previous translations

during decoding. Intuitively, the performance of

our model should be intact if it ignores the con-

text. Note that we trained our model with correct

contexts but test it with random contexts here.

Results in Table 2 show that the randomized

context, either source- or target-side, hurts the per-

formance of our model in both BLEU and APT,

similar to the findings in (Voita et al., 2018), and

the translation of pronouns suffers more (> -1.6

APT). Compared to SWBD, the incorrect context

has more negative impact on IMED, resulting in

worse performance than Baseline (Table 1), al-

though IMED also uses sentence-level translation.

We ascribe this to the target prefix constraint in

IMED which makes translation errors at early de-

coding much easier to propagate. We observe that

the incorrect target context acts similarly to its

source counterpart under IMED, albeit its selection

scope is much smaller (only limited to the trans-

lated segments), and combining both contexts leads

to a slight but consistent performance degradation.

These results demonstrate that our model indeed

learns to use contextual information for translation.

Figure 3: Case-sensitive tokenized BLEU (top) and APT
(bottom) as a function of context size C on MuST-C En-De
test set.

Figure 4: Case-sensitive tokenized BLEU (left y-axis) and
APT (right y-axis) on MuST-C En-De test set when varying λ

for IMED. Solid and dashed curves are for BLEU and APT,
respectively. C = 2.

How much context sentences should we use?

Although adding extra context provides more in-

formation, it makes learning harder: neural models

often struggle with long sequences. Figure 3 shows

the impact of context size on translation. We find

that our models do not benefit from context size

beyond 2 previous segments. Figure 3 also shows

that the overall trend of the impact of C on BLEU

and APT is similar for different decoding meth-

ods. Increasing C to 1 delivers the best APT, while

context-aware ST achieves its best BLEU at C = 2.

We use C = 2 for the following experiments.

Impact of λ on IMED. IMED heavily relies on

the hyperparameter λ (Eq. 2) to control its prefer-

ence between sentence-level and document-level

decoding. Figure 4 shows its impact on translation
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Model ACChp

Baseline (ST+AFS) 48.93

Ours + SWBD 49.90
Ours + IMED 49.66
Ours + IMED λ = 1.0 48.77

Table 3: Translation accuracy of homophones (ACChp) on
MuST-C En-De test set. C = 2,λ = 0.5.

quality, which clearly reveals a trade-off. The per-

formance of IMED (BLEU and APT) reaches its

peak at λ = 0.4, and decreases when λ becomes

either smaller or larger. The optimal value of λ for

IMED might vary greatly across different language

pairs. It also shows some difference across evalu-

ation sets (see Figure 7 in Appendix). In the fol-

lowing experiments, we will apply equal weighting

(λ = 0.5), a common choice for model ensembles

and not substantially worse than the optimum on

this dataset.

Impact of context on homophone translation.

Homophones (words that sound the same but hold

different meanings, such as “I” vs. “eye” and

“would” vs. “wood”) and other acoustically sim-

ilar words increase the learning difficulty of ST

models compared to textual MT. To allow for au-

tomatic quantitative evaluation, we extract words

from the MuST-C test set transcriptions which

share the same phonemes with Montreal Forced

Aligner (McAuliffe et al., 2017). We collect all ho-

mophones and evaluate their translation accuracy

(ACChp) in the same way as APT.

Table 3 shows that context-aware ST outper-

forms Baseline by > 0.73 ACChp, where SWBD

performs slightly better than IMED. After remov-

ing the document-level decoding, IMED (λ = 1.0)

performance drops greatly, even underperforming

Baseline. While we see some improvements to

homophone translations, they are in the same rela-

tive range as general improvements from context.

Anecdotal examples from manual inspection (see

Table 7 in Appendix) indicate that context may at

times help disambiguate acoustically similar forms,

but that (near-)homophones still remain a salient

source of translation errors.

Context improves the robustness of ST models

to audio segmentation errors. In MuST-C, the

audio is already well-segmented, with each seg-

ment corresponding to a short transcript. Neverthe-

less, natural audio, streaming speeches in particular,

has no such segment boundaries, and how to parti-

Model Random Gold

Baseline (ST+AFS) 20.40 27.40

Ours + SWBD 21.83 28.02
Ours + IMED 22.03 28.03

Table 4: Document-level case-sensitive tokenized BLEU for
different models on MuST-C En-De test set with erroneous
audio segmentation. We report average BLEU over three runs;
each run uses a different random seed to simulate segmentation
errors. C = 2,λ = 0.5. Random/Gold: document-based
BLEU when the random/gold segments are used.

tion audio itself is an active research area (Rangara-

jan Sridhar et al., 2013; Zhang and Zhang, 2020).

Since ST models are often trained with gold seg-

ments, they inevitably suffer from segmentation

errors at inference when the gold ones are unavail-

able.

The bottleneck mainly comes from the incom-

pleteness of each segment, which, we argue, con-

textual information could alleviate. We simulate

segmentation errors by randomly re-segmenting the

audio in MuST-C En-De test set based on the given

segment number. Especially, given an audio with

N gold segments, we randomly re-segment it into

N disjoint pieces, where each piece usually has dif-

ferent boundaries against its gold counterpart.7 We

evaluate different ST models with document-based

BLEU.

Table 4 summarizes the results. Segmentation

noise deteriorates translation quality for all ST mod-

els to a large degree (> -6 BLEU). Compared to

sentence-level ST, context-aware ST is less sen-

sitive to those errors. In particular, our model

with IMED yields a document-based BLEU of

22.03, substantially outperforming Baseline (by

1.63 BLEU). Our results also confirm the findings

of Gaido et al. (2020).

Context benefits simultaneous translation. Si-

multaneous translation requires that we start de-

coding before receiving the whole audio input to

minimize latency; operating on such short units in-

creases ambiguity, and the model may be forced to

predict future input to account for word order differ-

ences, which we hypothesize is easier with access

to super-sentential context. We focus on segment-

7Note we intentionally keep the same segment number, N ,
in the simulated noisy segmentation, because this offers us
a fair setup to analyze the impact of segmentation errors on
the final translation when compared to the gold segmentation.
This avoids the potential influence resulting from mismatched
segment number. We leave the study of the model’s robustness
to genuine segmentation noises to future work.
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Metric Model De Es Fr It Nl Pt Ro Ru

BLEU↑

Baseline (ST+AFS) 22.38 27.04 33.43 23.35 25.05 26.55 21.87 14.92
Ours + SWBD 22.70 27.12 34.23 23.46 25.84 26.63 23.70 15.53
Ours + IMED 22.86 27.50 34.28 23.53 26.12 27.37 24.48 15.95

SacreBLEU↑

Baseline (ST+AFS) 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7
Ours + SWBD 22.7 27.0 32.4 23.0 25.7 26.4 22.8 15.4
Ours + IMED 22.9 27.3 32.5 23.1 26.0 27.1 23.6 15.8

APT↑
Baseline (ST+AFS) 60.77 32.87 63.67 34.74 61.00 34.79 38.28 40.61
Ours + SWBD 62.83 33.01 64.58 35.20 61.69 35.56 40.30 41.74
Ours + IMED 62.56 33.60 64.66 35.20 61.75 36.50 40.92 42.32

ACChp↑

Baseline (ST+AFS) 48.93 43.85 56.96 41.08 50.73 43.64 47.07 30.80
Ours + SWBD 49.90 43.73 57.30 40.04 51.48 44.03 47.66 32.67
Ours + IMED 49.66 44.66 57.76 40.62 52.07 45.42 48.49 32.56

Table 5: Results on MuST-C for 8 language pairs. We set C = 2,λ = 0.5. Numbers in bold are the best results.

Model BLEU↑ DAL↓ NE↓

Baseline (ST+AFS) 21.02 3.97 1.72

Ours + SWBD 21.86 3.82 1.95
Ours + SWBD-Cons 21.98 3.75 1.59
Ours + IMED 22.55 3.91 1.64

Table 6: Simultaneous translation results (BLEU, DAL and
NE) for different models on MuST-C En-De test set. C =

2,λ = 0.5.

level E2E simultaneous translation, and adopt the

re-translation method (Niehues et al., 2016; Ari-

vazhagan et al., 2020b,a) where we translate the

source input segment from scratch after every 1

second. For training, we finetune each model for

extra 20K steps with a 1:1 mix of full-segment and

prefix pairs, following Arivazhagan et al. (2020a).

We construct the prefix pairs by uniformly select-

ing an audio prefix length and then proportionally

deciding the target prefix length based on the sen-

tence length. Note that the context inputs in our

model are still full segments/sentences. We adopt

tokenized BLEU, differentiable average lagging

(DAL), and normalized erasure (NE) to evaluate

the translation quality, latency and stability, respec-

tively, following Arivazhagan et al. (2020a). Note

DAL and NE are measured based on words.

Results in Table 6 show that context-aware ST

improves translation quality (> +0.84 BLEU) and

reduces translation latency (> -0.06 DAL) regard-

less of the decoding method. It also enhances trans-

lation stability when the target prefix constraint

is applied (> -0.08 NE, SWBD-Cons & IMED).

SWBD performs worse in NE, because it allows

changes in the translation of context which in-

creases instability. Overall, context provides extra

information to the translation model, before the

Figure 5: DAL (left y-axis) and NE (right y-axis) as a func-
tion of λ for IMED on MuST-C En-De test set in simultaneous
translation setting. Solid and dashed curves are for DAL and
NE, respectively. C = 2. λ → 0.0: document-level decoding;
λ → 1.0: sentence-level decoding.

E2E ST models see the whole input, which benefits

simultaneous translation.

Figure 5 further illustrates how context impacts

simultaneous translation. With the increase of

sentence-level decoding (λ → 1.0), IMED pro-

duces higher DAL and NE, i.e. worse quality. We

ascribe the reduction of latency and stability in our

model to the inclusion of contextual information.

5.3 Results on Other Language Pairs

Table 5 summarizes the results for all 8 transla-

tion pairs covered by MuST-C. Overall, our model

obtains improvements over most metrics and lan-

guage pairs, despite their different language charac-

teristics. Out of 8 languages, our model performs

relatively worse on Es and It with smaller BLEU

gains and even negative results in ACChp. By con-

trast, our model yields the largest improvement on

Ro. In particular, our model with IMED achieves a

detokenized BLEU of 23.6 on En-Ro, surpassing

the state-of-the-art result 22.2 (Zhao et al., 2020)

reported so far.
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6 Conclusion and Future Work

Our experiments confirm the effectiveness of

context-aware modeling for end-to-end speech

translation. With concatenation-based contextual

modeling and appropriate decoding method, we

observe positive impact of context on translation.

Context-aware ST improves general translation

quality in BLEU, and also helps pronoun and ho-

mophone translation. ST models become less sen-

sitive to (artificial) audio segmentation errors with

context. In addition, context also improves simulta-

neous translation by reducing latency and erasure.

We observe overall positive results over different

languages and evaluation metrics on the MuST-C

corpus.

In the future, we will investigate more dedicated

neural architectures to handle long-form speech

input. While we relied on a dataset with sentence

segmentation in this work, we are interested in re-

moving the reliance on segmentation at inference

time to implement the full-fledged streaming trans-

lation scenario.
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Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4791–4796,
Brussels, Belgium. Association for Computational
Linguistics.

António Lopes, M. Amin Farajian, Rachel Bawden,
Michael Zhang, and André F. T. Martins. 2020.
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A Impact of C and λ on Dev Set

Figure 6: Case-sensitive tokenized BLEU (top) and APT
(bottom) as a function of context size C on MuST-C En-De
dev set.

Figure 7: Case-sensitive tokenized BLEU (left y-axis) and
APT (right y-axis) on MuST-C En-De dev set when varying
λ for IMED. Solid and dashed curves are for BLEU and APT,
respectively. C = 2.

Results in Figure 6 and 7 show that the optimal

value of C and λ also differs across evaluation

sets. Overall, setting C = 2 and λ = 0.5 offers us

decent performance. Note again, we selected these

configurations for generality and simplicity rather

than its being optimal.

B Case Study on Homophone

Translation

C Examples for Misaligned Translation
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Context I remember my first fire.

Source I was the second volunteer on the scene, so there was a pretty good chance I was going to get in.

Reference Ich war der zweite Freiwillige an der Brandstelle, ich hatte also recht gute Chancen hinein zu können.

Baseline Ich war der zweite Freiwillige auf der CNU, also war ich ziemlich gut darin.

Ours + SWBD Ich war der zweite Freiwillige auf der CNN, also gab es eine ziemlich gute Chance, dass ich sie bekommen würde.

Ours + SWBD-Cons Ich war der zweite Freiwillige auf dem CNN, also gab es eine ziemlich gute Chance, dass ich sie bekommen würde.

Ours + IMED Ich war der zweite Freiwillige auf dem CNN, also war ich ziemlich gut darin, dass ich ihn kriegen würde.

Context The Human Genome Project started in 1990, and it took 13 years.

Source It cost 2.7 billion dollars.

Reference Es kostete 2,7 Milliarden Dollar.

Baseline Es kostet 2,7 Milliarden Dollar. (EN: costs)

Ours + SWBD Es kostete 2,7 Milliarden Dollar.

Ours + SWBD-Cons Es kostete 2,7 Milliarden Dollar.

Ours + IMED Es kostet 2,7 Milliarden Dollar. (EN: costs)

Table 7: Examples of translation errors due to confusion with near-homophones (bold) from the MuST-C En-De test set.

(1)
Source She asked the monk, ”Why is it that her hand is so warm and the rest of her is so cold?” ”Because

you have been holding it since this morning,” he said. ”You have not let it go.”
Reference Sie fragte den Mönch: ”Wieso ist ihre Hand so warm und der Rest von ihr ist so kalt?” ”Weil Sie

sie seit heute morgen halten”, sagte er. ”Sie haben sie nicht losgelassen.”
Translation Sie fragte den Monat: ”Warum ist ihre Hand so warm?” Und der Rest von ihr ist so kalt, weil ihr

seit diesem Morgen das hält.

(2)
Source If there is a sinew in our family, it runs through the women.
Reference Wenn es in unserer Familie ein Band gibt, dann verläuft es durch die Frauen.
Translation Er sagte: ”Sie haben es nicht geschafft, loszulassen.”

Table 8: Example of misaligned translation for SWBD-Cons from the MuST-C En-De test set. The translation for the second
segment (2) actually aligns with the first one (1), as highlighted in bold.
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Abstract

End-to-end (E2E) speech-to-text translation (ST)
often depends on pretraining its encoder and/or
decoder on speech recognition or text transla-
tion tasks, without which translation performance
drops substantially. However, whether such pre-
training is a necessity for E2E ST has rarely been
studied in the literature. In this paper, we re-
visit this question and explore the extent to which
the quality gap between models with and with-
out pretraining can be narrowed. We reexamine
several techniques proven beneficial to ST previ-
ously, and offer a set of best practices that biases
a Transformer-based E2E ST system toward train-
ing from scratch. Besides, we propose parameter-
ized distance penalty to facilitate the modeling of
locality in the self-attention model for speech. On
four benchmarks covering 23 languages, our ex-
periments show that, without any pretraining, the
proposed system reaches and even outperforms
previous studies adopting pretraining, although
the gap remains in (extremely) low-resource set-
tings. Finally, we discuss neural acoustic feature
modeling, where a neural model is designed to
extract acoustic features from raw speech signals
directly, with the goal to simplify inductive bi-
ases and add freedom to the model in describing
speech. For the first time, we demonstrate its fea-
sibility and show encouraging results on ST tasks.
Source code will be released upon acceptance.

1. Introduction
End-to-end (E2E) speech-to-text translation (ST) is the task
of translating a source-language audio directly to a foreign
text without any intermediate outputs (Duong et al., 2016;
Bérard et al., 2016), which has gained increasing popular-
ity and obtained great success recently (Sung et al., 2019;

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Salesky et al., 2019; Zhang et al., 2020; Chen et al., 2020;
Han et al., 2021; Zheng et al., 2021; Anastasopoulos et al.,
2021). Different from the traditional cascading method
which decomposes ST into two sub-tasks – automatic speech
recognition (ASR) for transcription and machine translation
(MT) for translation, E2E ST jointly handles them in a sin-
gle, large neural network. This endows E2E ST with special
advantages on reducing translation latency and bypassing
transcription mistakes made by ASR models, making it
theoretically attractive.

However, directly modeling speech-to-text mapping is non-
trivial. The translation alignment between speech and text
is no longer subject to the monotonic assumption. Also,
the high variation of speech increases the modeling diffi-
culty. Therefore, rather than training E2E ST models from
scratch, researchers often resort to pipeline-based training
with auxiliary tasks, which first pretrains the speech encoder
on ASR data and/or the text decoder on MT data followed
by a finetuning on ST data. Such pretraining was reported
to greatly improve translation quality (Di Gangi et al., 2019;
Wang et al., 2019a; Zhang et al., 2020; Xu et al., 2021), and
has become the de-facto standard in recent ST studies and
toolkits (Inaguma et al., 2020; Wang et al., 2020a; Zhao
et al., 2021; Zheng et al., 2021). Despite its success, never-
theless, whether the pretraining is a necessity for E2E ST
and how far we can go without it are still open questions.

In this paper, we aim at exploring the extent to which the
quality gap between ST models with and without pretrain-
ing can be narrowed, and also when the pretraining really
matters. We argue that the inferior performance of ST from
scratch is mainly a result of the dominance of pretrain-
ing, and consequent lack of focus on optimizing E2E ST
models trained from scratch. To test this hypothesis, we
investigate methods to bias a Transformer-based E2E ST
model (Vaswani et al., 2017) towards training from scratch.
We summarize a set of best practices for our setup by revisit-
ing several existing techniques that have been proven useful
to ST previously. We further introduce two proposals to
add freedom to Transformer to model speech with the hope
of gaining translation quality: 1) a parameterized distance
penalty that facilitates self-attention to capture local depen-
dencies of speech; and 2) neural acoustic feature modeling
providing a trainable alternative to the heuristic rule-based
acoustic feature extraction.
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To examine the generality of our methods, we conducted
(bilingual) experiments on four speech translation bench-
marks, including MuST-C, Covost2, LibriSpeech, and
Kosp2e, which cover 23 languages of different families
with training data sizes. Experimental results show that the
necessity of pretraining has been over-estimated in prior
work, and integrating techniques to improve E2E ST with-
out using any pretraining is feasible and promising. Our
main findings are listed below:

• With proper adaptation, E2E ST trained on speech-
translation pairs alone from scratch can match or even
surpass its pretrained counterpart.

• Pretraining still matters, mainly in (extremely) low-
resource regime and when large-scale extra ASR or
MT corpora are available.

• We present a set of best practices for E2E ST from
scratch, including smaller vocabulary size, wider feed-
forward layer, deep speech encoder with the post-LN
(layer normalization) structure, Connectionist Tempo-
ral Classification (CTC)-based regularization using
translation as the target, and a novel parameterized
distance penalty.

• We demonstrate that dropping heuristic rule-based
acoustic features is feasible, and that neural acoustic
features can be learned in an end-to-end ST framework.

2. Why Revisiting ST From Scratch?
In our view, there are several reasons making E2E ST from
scratch intriguing.

First of all, our study does not preclude pretraining (or more
generally, multi-task learning) for ST. We believe that lever-
aging knowledge from auxiliary tasks via pretraining to im-
prove ST is a remarkable research direction. But rather, our
study contributes to a better understanding of the genuine
role of pretraining in E2E ST. Re-assessing the importance
of pretraining is a useful signal to inform future research
projects and practical deployments of ST.

Secondly, focusing on ST from scratch has an even higher
relevance in settings where ASR/MT data is scarce. By only
requiring speech-translation training pairs, ST from scratch
reduces data requirements and the associated costs. This is
especially important for the estimated 3000 languages in the
world that have no written form at all, for which it would
be impractical to collect large amounts of phonetically tran-
scribed data.

Thirdly, removing pretraining eases model analysis and sim-
plifies the training pipeline, which also offers a testbed to
identify inductive biases that support ST with better data
efficiency. Pretraining often takes extra training time and

Stacking & Downsampling

Transformer Encoder
  Deep Encoder
  Parameterized Distance Penalty

Transformer Decoder
   Autoregressive Structure

CTC Objective MLE Objective

Translation Reference: 
Ich erzähle Ihnen mal eine Geschichte, dann verstehen Sie mich vielleicht besser.

CTC loss MLE loss

Acoustic Features

Figure 1: Overview of the proposed ST system. The example is
for En-De translation. During inference, the CTC layer is dropped
and only the autoregressive decoder is used.

computing resources. As pretraining itself affects the final
results, it becomes more difficult to figure out the source
of the improved performance when new algorithms or ar-
chitectures are incorporated. In contrast, ST from scratch
simplifies model development, and lets us efficiently re-
examine recently proposed techniques for ST, and explore
novel techniques. This allows us to build strong models for
future research to build on or compare to.

3. Methods for ST From Scratch
We argue that the inferior performance of ST from scratch
as reported in the literature is due to a lack of system adap-
tation with respect to training and modeling. In this section,
starting with a brief overview of our baseline system, we
discuss several potential directions that could strengthen
E2E ST without pretraining. The overall framework of the
proposed system is shown in Figure 1.

3.1. Baseline

Our baseline follows the encoder-decoder paradigm (Bah-
danau et al., 2015) and uses Transformer (Vaswani et al.,
2017) as its backbone. Except for (speech, translation) pairs
denoted as (X , Y ), respectively, we assume that there is no
access to other data at training for ST from scratch.

The encoder stacks Nenc identical layers, each of which
has a multi-head self-attention sublayer and a feed-forward
sublayer. To enhance its short-range dependence modeling,
we apply the logarithmic distance penalty (Di Gangi et al.,
2019) to each head of its self-attention:

Head(Q,K,V) = softmax
(

QKT

√
dhead

− π (D)

)
V, (1)

where Q,K,V ∈ R|X|×dhead are the query, key and value
inputs, respectively. dhead is the attention head dimension.
| · | denotes sequence length. D ∈ R|X|×|X| stores the
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position distance, i.e. Di,j = |i− j|+ 1, and π(·) = log(·).

Analogous to the encoder, the decoder stacks Ndec identical
layers. We reuse the standard Transformer decoder for
our baseline, and optimize all model parameters using the
traditional maximum likelihood objective (MLE), or LMLE.

3.2. Hyperparameter Tuning

Hyperparameters often highly affect ST from scratch, but ex-
haustively searching for optimal settings is impractical. In-
stead, we take inspiration from past studies and re-examine
several configurations that have been proven beneficial to ST
with pretraining. We hypothesize that such configurations
also have a high chance to generalize to ST from scratch. For
example, since ST is generally a low-resource task, using
smaller vocabulary (Inaguma et al., 2020), larger dropout
rate (Sennrich & Zhang, 2019), reduced attention heads and
model dimension (Inaguma et al., 2020; Zhao et al., 2021)
might help to avoid overfitting. We also test different set-
tings for acoustic feature extraction, deep encoder (Zhang
et al., 2019) and wide feed-forward layer (Inaguma et al.,
2020), apart from tuning the length penalty at inference (Wu
et al., 2016).

3.3. CTC-based Regularization

CTC, or Connectionist Temporal Classification, is a latent
alignment objective that models probabilistic distribution
by marginalizing over all valid mappings between the input
and output sequence (Graves et al., 2006). Under a strong
conditional independence assumption, it can be computed
efficiently and tractably via dynamic programming. We
refer readers to Graves et al. (2006) for more algorithmic
details. So far, CTC has been applied to non-autoregressive
MT and ST successfully (Libovický & Helcl, 2018; Chuang
et al., 2021) and is well supported by popular computational
frameworks.

In this paper, we regard CTC as a regularizer and stack it
onto the encoder for ST modeling as shown in Figure 1. The
overall training objective becomes as below:

L(X,Y ) = (1− λ)LMLE(Y |X) + λLCTC(Y |X), (2)

where λ is a hyperparameter controlling the degree of the
regularization. Chuang et al. (2021) showed that CTC im-
proves the reordering tendency of the self-attention in non-
autoregressive ST, although it assumes monotonicity. We
expect that such reordering could reduce the learning dif-
ficulty of ST and ease the decoder’s job, delivering better
translation quality. One problem of applying CTC to ST
is that the input speech sequence might be shorter than its
translation sequence, which violates CTC’s presumption.
We simply ignore these samples during training. Note that
the CTC layer will be abandoned after training.

3.4. Parameterized Distance Penalty

The distance penalty in Eq. 1 penalizes attention logits log-
arithmically with distance based on a hard-coded function,
reaching a certain degree of balance in modeling local and
global dependencies. However, such a function lacks flexi-
bility and inevitably suffers from insufficient capacity when
characterizing data-specific locality. To solve this problem,
we propose parameterized distance penalty (PDP) which
includes a learnable parameter for each distance. PDP is
inspired by the relative position representation (Shaw et al.,
2018; Raffel et al., 2020) and is formulated as below:

πPDP(D) = log(D)f(D), (3)

f(Di,j) =

{
wDi,j , if Di,j < R

wR, otherwise
(4)

where w ∈ RR is a trainable vector, R is a hyperparameter,
and wi denotes its i-th element. PDP is easily parallelizable,
adding little computational overhead. We initialize each wi

to 1 so that PDP starts from π(·) and then gradually adjusts
itself during training. Besides, w is attention head-specific,
i.e. each head has its own parameterization. By doing so, we
enable different heads capturing varying degree of locality,
which further increases modeling freedom.

4. Experimental Setup
Dataset We work on four benchmarks covering different
domains and 23 languages from diverse language families.

MuST-C MuST-C is extracted from TED talks (Di Gangi
et al., 2019), offering translations from English (En) to
8 languages: German (De), Spanish (Es), French (Fr),
Italian (It), Dutch (Nl), Portuguese (Pt), Romanian (Ro)
and Russian (Ru). The training sets of each language
are at a similar scale, roughly 452 hours with 252K
utterances on average.

LibriSpeech En-Fr The Augmented LibriSpeech dataset is
collected by aligning e-books in French with English
utterances of LibriSpeech (Kocabiyikoglu et al., 2018).
We only use the 100 hours clean training set and its
augmented references offered by Google Translate for
training, totalling 94K utterances.

Kosp2e Ko-En Kosp2e is constructed from a mix of four
domains (textbook, news, AI agent and diary) for
Korean-to-English (Ko-En) speech translation (Cho
et al., 2021). The training set has about 190 hours with
106K utterances.

CoVoST CoVoST (version 2) is a large-scale multilingual
ST corpus collected from Common Voice (Ardila et al.,
2020), providing translations from En to 15 languages
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Table 1: Ablation results on MuST-C En-De test set. #Params: number of model parameters. BLEU: higher is better, SacreBLEU.
Numbers in bold denote top scores.

ID System #Params BLEU↑
1 Baseline 51M 18.1

Tune beam search, dropout and batch size
2 1 + adjust length penalty at inference 51M 18.8
3 1 + higher dropout (0.2→0.4) 51M 17.4
4 1 + apply dropout to raw waveform signals (rate 0.1) 51M 14.6
5 1 + reduce batch size by half 51M 17.6

Tune model dimension and depth
6 2 + reduce model dimension and attention heads (H : 8 → 4, dmodel : 512 → 256) 20M 19.0
7 6 + enlarge feed-forward layer (dff : 2048 → 4096) 33M 19.3
8 6 + enlarge encoder depth with DS-Init (Nenc : 6 → 12) 28M 20.4
9 8 + enlarge feed-forward layer (Nenc = 12, dff : 2048 → 4096) 47M 21.1
10 2 + enlarge encoder depth with DS-Init (Nenc : 6 → 12) 70M 20.3

Add parameterized distance penalty (PDP)
11 2 + PDP (R = 512) 51M 19.5
12 11 + initialize w in PDP randomly 51M 18.3
13 11 + use 80-dimensional log mel-scale filterbank (F : 40 → 80) 51M 19.3
14 11 + remove delta and delta-delta features (dspeech : 120 → 40) 50M 18.8

Tune vocabulary size and LN
15 9 + PDP 47M 21.8
16 15 + small BPE vocabulary (V : 16K → 8K) 46M 21.8
17 16 + change post-LN to pre-LN 46M 20.6

Final system: add CTC
18 16 + CTC regularization (λ = 0.3) (also, the proposed system) 48M 22.7
19 for comparison: 16 + ASR pretraining 46M 22.9
20 for comparison: 1 + ASR pretraining 51M 20.7

– Arabic (Ar), Catalan (Ca), Welsh (Cy), De, Estonian
(Et), Persian (Fa), Indonesian (Id), Japanese (Ja), Lat-
vian (Lv), Mongolian (Mn), Slovenian (Sl), Swedish
(Sv), Tamil (Ta), Turkish (Tr), Chinese (Zh) – and from
21 languages to En, including the 15 target languages
as well as Es, Fr, It, Nl, Pt and Ru (Wang et al., 2020b).
The training set for En→Xx translation is of similar
scale, roughly 427 hours with 289K utterances. In
contrast, the training data size for Xx→En translation
varies greatly, from about 1.2 hours/1.2K utterances
(Id) to 263 hours/207K utterances (Fr). We mainly
work on Fr, De, Es, Ca, It, Ru, and Zh for Xx→En.

For each benchmark, we use the official train/dev/test split
for experiments. We convert all audios to a sampling rate of
16KHz and truncate segments to 3000 frames. We extract 40-
dimensional log mel-scale filterbank features (F = 40) with
a step size of 10ms and window size of 25ms, which are then
expanded with their delta and delta-delta features followed
by mean subtraction and variance normalization, resulting
in the final 120-dimensional acoustic features (dspeech =
120). We tokenize and truecase all texts via Moses (Zh and
Ja excluded) (Koehn et al., 2007), and handle infrequent
words via subword models (Sennrich et al., 2016; Kudo
& Richardson, 2018) with a vocabulary size of 16K (V =

16K).

Model Setting On top of the acoustic input, we concate-
nate three consecutive frames without overlapping as a way
of downsampling (Zhang et al., 2020), as in Figure 1. We
then add a linear layer to get the encoder input of dimension
dmodel. We use the sinusoidal encoding to distinguish differ-
ent positions, and employ the post-LN (layer normalization)
structure for Transformer (Vaswani et al., 2017).

Regarding Baseline, we set dmodel = 512, dhead = 64, the
number of attention head H = 8, the feed-forward layer
size dff = 2048 and Nenc = Ndec = 6. Note dmodel =
H · dhead. By default, we set R = 512 and λ = 0.3.

We employ Adam (Kingma & Ba, 2015, β1 = 0.9, β2 =
0.98) for parameter update using adaptive learning rate
schedule as in (Vaswani et al., 2017) with a warmup step
of 4K and label smoothing of 0.1. Dropout of rate 0.2 is
applied to residual connections and ReLU activations. We
organize training samples of around 20K target subwords
into one batch, and train models up to 50K steps.

Evaluation We average the best 10 checkpoints according
to dev set performance for evaluation. For decoding, we
adopt beam search, where we set the beam size and length
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Figure 2: Dev SacreBLEU scores as a function of length penalty
(0.5 → 1.5) for Baseline on MuST-C En-De. Trade-off exists.

penalty to 8 and 0.6, respectively. We will examine the
impact of the length penalty on translation later. Unless
otherwise stated, we measure translation quality with detok-
enized case-sensitive BLEU (Papineni et al., 2002) offered
by SacreBLEU (Post, 2018).1 Note that we did not perform
any filtering to the test set at evaluation time.

5. Results and Analysis
We test different hyperparameters and our proposals mainly
on MuST-C En-De. Table 1 summarizes the results.

Apart from architecture, length penalty in beam search
also matters. Length penalty is used to bias beam search
generating longer or shorter outputs, which often largely
affects translation quality as shown in Figure 2.2 Tuning
this setting alone results in +0.7 BLEU gains (1 → 2).

Applying more dropout and smaller batch size helps lit-
tle. Dropout is a popular regularizer to avoid overfitting.
We tried using larger dropout rate and adding dropout to raw
waveforms, but ended up with significantly slower conver-
gence and worse performance (1 → 3, 4). Also, reducing
training batch deteriorates ST (1 → 5).

Deepening speech encoder, widening feed-forward layer,
and reducing model dimension benefit ST. Halving
model dimension greatly reduces the number of model pa-
rameters but still retains translation quality (2 → 6). Enlarg-
ing the encoder depth (from 6 to 12) and the feed-forward
dimension (from 2048 to 4096) leads to substantial quality
improvement, +2.1 BLEU (6 → 9). After varying dimen-
sions, we could achieve a BLEU score of 21.1. Note, we
employed the depth-scaled initialization to smooth model
gradients for deep Transformer (Zhang et al., 2019, DS-Init)
and set α = 0.5. Besides, deep speech encoder improves

1Signature: BLEU+c.md+#ref.1+s.exp+tok.13a+v.1.4.14
2Note that its impact is dataset-dependent. On CoVoST, BLEU

changes little when varying it.
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Figure 3: Dev SacreBLEU on MuST-C En-De when changing R
in PDP for system 11. Setting R = 512 yields the best result.

ST from scratch with the Baseline dimensions (2 → 10).

The proposed parameterized distance penalty improves
ST. The hyperparameter R in Eq. 3 affects the flexibility
of PDP in modeling local context. Figure 3 shows its impact
on ST. In general, setting R = 512 achieves good perfor-
mance. Note, its optimal setting might (and is likely to) be
dataset-dependent.

Applying PDP to ST gains BLEU (2 → 11) and is com-
plementary to model dimension manipulation (9 → 15),
reaching a test BLEU score of 21.8. We also tested the
effectiveness of initializing all wi to 1. Using the vanilla
random initialization instead delivers inferior quality, -1.2
BLEU (11 → 12).

Inadequate acoustic feature extraction hurts ST. In pre-
vious ST systems (Inaguma et al., 2020; Zhao et al., 2021),
acoustic feature extraction often uses 80-dimensional filter-
banks without delta and delta-delta features. We checked
this in our setup. Using more filterbanks does not help much
(11 → 13), and delta features benefit ST a lot (11 → 14).

Reducing vocabulary size affects En-De translation little.
Previous studies also suggest to use smaller vocabularies
in low-resource settings (Karita et al., 2019; Sennrich &
Zhang, 2019). Reducing vocabulary size by half yields little
impact on En-De translation (15 → 16). We adopt smaller
vocabularies due to three reasons: 1) it reduces the number
of parameters; 2) we observed that it has much greater
influence on other languages; and 3) CTC with smaller
vocabulary is more computationally efficient.

Post-LN vs. Pre-LN Another way to train deep Trans-
former is to use the pre-LN structure (Wang et al., 2019b).
It has been shown that the post-LN, once successfully op-
timized, often outperforms its pre-LN counterpart (Zhang
et al., 2019). We reconfirmed this observation, and found
that the post-LN ST with DS-Init shows clear superiority in
performance, +1.2 BLEU (17 → 16).
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Table 2: Results of different systems on MuST-C tst-COMMON. Avg: average score over different languages. †: systems that might
perform filtering to the test set, so comparison could be unfair. ‡: systems using large-scale external ASR and/or MT data.

System Aux. Data De Es Fr It Nl Pt Ro Ru Avg
ASR MT

Adapted Transformer (Di Gangi et al., 2019) ✓ 17.3 20.8 26.9 16.8 18.8 20.1 16.5 10.5 18.5
ESPnet-ST (Inaguma et al., 2020)† ✓ ✓ 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8 25.1
AFS (Zhang et al., 2020) ✓ 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7 23.9
Contextual Modeling (Zhang et al., 2021) ✓ 22.9 27.3 32.5 23.1 26.0 27.1 23.6 15.8 24.8
Fairseq-ST (Wang et al., 2020a)† ✓ 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
NeurST (Zhao et al., 2021) ✓ 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9
E2E-ST-JT (Du et al., 2021)† ✓ 23.1 27.5 32.8 23.6 27.8 28.7 22.1 14.9 25.1
Chimera (Han et al., 2021)‡ ✓ ✓ 27.1 30.6 35.6 25.0 29.2 30.2 24.0 17.4 27.4

our system 22.7 28.1 33.4 23.2 26.9 28.3 22.6 15.4 25.1
our system + neural acoustic feature modeling 23.0 28.0 33.5 23.5 27.1 28.2 23.0 15.6 25.2
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Figure 4: Dev SacreBLEU as a function of λ on MuST-C En-De
for system 18. We set λ = 0.3 in our experiments.

CTC greatly improves ST from scratch. Finally, we
integrate the CTC regularization into our best system. The
hyperparameter λ in Eq. 2 controls the trade-off between
two different objectives. Figure 4 shows that λ directly
affects ST, and setting λ = 0.3 achieves the best result.
Under this setting, CTC benefits ST with another significant
quality gain, +0.9 BLEU, reaching a test BLEU score of
22.7 (18).

From Baseline to system 18, we improve ST by 4.6 BLEU.
Note that this system also outperforms the baseline with
ASR pretraining (20), and that the gap between our best
system trained from scratch and its pretrained counterpart
has become very narrow (18 vs. 19). For all follow-up
experiments, we use system 18 as our proposed system.

Pretraining matters in low-resource regime. Pretraining
might not be a necessity when rich training data is given, but
it matters as the amount of training data decreases. Figure 5
demonstrates this. ASR pretraining helps low-resource ST.

Results On Other Languages Putting all together, we
obtain a set of best practices, involving Nenc = 12, Ndec =

50.00 100.00 150.00 229.70
# Training Samples (x1000)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

B
L

E
U

Our System (From Scratch)

ST + ASR Pretraining

Figure 5: Impact of the amount of training data on MuST-C En-De
translation. Results are for test SacreBLEU.

6, dmodel = 256, H = 4, dff = 4096, V = 8K, using
PDP with R = 512 and applying CTC with λ = 0.3. We
then keep this configuration and train models for other lan-
guage pairs. Tables 2-5 list the results.

Our revisiting of ST from scratch shows that its perfor-
mance gap to ST with pretraining has generally been over-
estimated in the literature. This gap can be largely reduced
and even fully closed after biasing E2E ST towards train-
ing from scratch. Our system achieves an average BLEU
of 25.1 and 17.3 on MuST-C and CoVoST En→Xx, re-
spectively, which surpasses many popular neural systems,
such as the ones supported by Fairseq (Wang et al., 2020a)
and NeurST (Zhao et al., 2021). Similarly, our system
achieves very promising performance on LibriSpeech En-Fr
and Kosp2e Ko-En, delivering 18.9 and 5.8 BLEU, respec-
tively. Note Cho et al. (2021) employed extra large-scale
ASR data for pretraining, which is merely 0.1 BLEU higher
than ours. While this is beyond the scope of our work, our
results suggest that it is worthwhile to revisit large-scale
pretraining based on our stronger baseline, which will lead
to either new state-of-the-art results or a re-evaluation of the
effectiveness of large-scale pretraining.
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Table 3: Results of different systems for En→Xx and Xx→En on CoVoST. We report character-level BLEU for Chinese and Japanese
following Wang et al. (2020b). Languages underlined have training data fewer than 100K samples.

System Aux. Data Xx→En

ASR MT Fr De Es Ca It Ru Zh Avg

ST from scratch (Wang et al., 2020b) 24.3 8.4 12.0 14.4 0.2 1.2 1.4 8.8
ST + ASR Pretraining (Wang et al., 2020b) ✓ 26.3 17.1 23.0 18.8 11.3 14.8 5.8 16.7

our system 26.9 14.1 15.7 17.2 2.4 3.6 2.0 11.7

En→Xx

Ar Ca Cy De Et Fa Id Ja Lv Mn Sl Sv Ta Tr Zh Avg

8.7 20.2 22.2 13.6 11.1 11.5 18.9 26.9 11.5 6.6 11.5 20.1 9.9 8.9 20.6 14.8
12.1 21.8 23.9 16.3 13.2 13.1 20.4 29.6 13.0 9.2 16.0 21.8 10.9 10.0 25.4 17.1

12.3 22.9 24.5 17.5 13.6 12.7 21.4 28.8 13.6 9.9 15.2 22.9 10.8 10.3 23.3 17.3

Table 4: Results of different systems on LibriSpeech En-Fr test set.
For comparison to previous work, we report both case-insensitive
tokenized BLEU (tok) and SacreBLEU.

System Aux. Data BLEU

ASR MT tok Sacre

ST + KD (Liu et al., 2019) ✓ 17.02
TCEN (Wang et al., 2019a) ✓ ✓ 17.05
AFS (Zhang et al., 2020) ✓ 18.56
LUT (Dong et al., 2021) ✓ ✓ 18.34
Chimera (Han et al., 2021)‡ ✓ ✓ 19.4

our system 18.90 16.5

Table 5: Results of different systems on Kosp2e Ko-En test set.

System Aux. Data BLEU
ASR MT

ST from scratch (Cho et al., 2021) 2.6
ST + pretraining (Cho et al., 2021)‡ ✓ 5.9

our system 5.8

Our results also show that pretraining matters mainly in
two aspects: 1) low-resource scenarios, where our system
still lags far behind pretraining-enhanced ST, -5.0 BLEU on
CoVoST Xx→En in Table 3; and 2) large-scale ASR and/or
MT data is available, where pretraining or joint modeling
can largely improve ST, +2.3 BLEU on MuST-C in Table 2
yielded by Chimera (Han et al., 2021).

Notice that our system should be regarded as a lower-bound
for ST from scratch, since many outstanding optimization
techniques for E2E ST, e.g. SpecAugment (Park et al., 2019),
are not considered here due to resource limitations. In addi-
tion, we did not aggressively optimize our system towards
very low-resource scenarios, so there should still be room
for quality improvement on CoVoSt Xx→En. Also note that
comparison to ST models powered by ESPnet (Inaguma

et al., 2020) and Fairseq (Wang et al., 2020a) might not be
fair because both toolkits perform data filtering to the test
set, although SacreBLEU is also used.

6. Neural Acoustic Feature Modeling
A general trend in deep learning is to replace handcrafted
features with neural networks to let the model automati-
cally capture or learn the underlying pattern behind data. In
E2E ST, one heuristic is the adoption of log mel-scale filter-
banks for acoustic modeling. Despite its success, filterbank-
based modeling prevents us from accessing full acoustic
details and its transformation might suffer from informa-
tion loss (Lam et al., 2021), making it sub-optimal for ST.
Inspired by recent speech studies on modeling raw wave-
forms (Lam et al., 2021), we propose neural acoustic feature
modeling (NAFM) to remove such heuristic and increase
the freedom of E2E ST in describing speech.

The extraction of filterbanks often involves a sequence of
two specifically designed linear transformations. To sim-
ulate such structure, we employ two feed-forward neural
blocks for NAFM as follows:

x(1) = LN
(

FFN
(
x(0)

)
+ x(0)

)
, (5)

x(2) = LN
(

FFN
(
x(1)

)
+ x(1)

)
, (6)

where x(0) ∈ Rdspeech is the raw speech frame, and FFN(·)
is the feed-forward layer as in Transformer (Vaswani et al.,
2017) with dff = 4096. We expect that, by adding train-
able parameters tuned with translation losses, NAFM could
induce ST-oriented acoustic features that improves ST.

However, directly using x(2) as an alternative to the filter-
bank features xf results in poor convergence. We argue that
filterbanks offer helpful inductive biases to ST, and propose
to leverage such information to regularize NAFM. Formally,
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Table 6: Results of applying NAFM to ST on MuST-C En-De.

System # Params BLEU

our system 48M 22.7

our system + NAFM 54M 23.0
our system + two FFN blocks alone 54M 22.7

we add the following L2 objective into training:

LNAFM(X,Y ) = L(X,Y ) + γ
1

|X|
(∥X(2) −Xf∥2), (7)

where γ is a hyperparameter and set to 0.05 in experiments.

Results in Table 6 show that training E2E ST from scratch
on raw waveforms is feasible. NAFM improves ST by 0.3
BLEU on MuST-C En-De, and such improvement is not
a trivial result of simply adding parameters. The last row
of Table 2 shows the effectiveness of NAFM on other lan-
guages. Overall, the performance of NAFM matches and
even outperforms its filterbank-based counterpart across
different languages. Although NAFM does not deliver sig-
nificant gains, we believe that optimizing ST with raw wave-
forms has great potential and deserves more effort.

7. Related Work
Methods to improve E2E ST are many. Apart from develop-
ing novel model architectures (Di Gangi et al., 2019; Karita
et al., 2019; Zhang et al., 2020), one promising way is to
leverage knowledge transfer from auxiliary tasks. Multilin-
gual or cross-lingual ST improves translation by adding
translation supervisions from other languages (Inaguma
et al., 2019; Bansal et al., 2019; Liu et al., 2019). Multi-task
learning benefits ST by jointly modeling ASR and ST tasks
within a single model (Anastasopoulos & Chiang, 2018;
Zheng et al., 2021; Dong et al., 2021). Pretraining methods,
including large-scale self-supervised pretraining (Schneider
et al., 2019) and ASR/MT-based supervised pretraining, of-
fer a warm-up initialization for E2E ST to improve its data
efficiency (Le et al., 2021; Salesky et al., 2019; Xu et al.,
2021). However, all these studies assume that (bilingual)
ST from scratch is poor, while spending little effort on opti-
mizing it. We challenge this assumption and demonstrate
that ST from scratch can also yield decent performance.

We adopt the CTC objective as a regularizer to improve
E2E ST. CTC was proposed for ASR tasks to handle the la-
tent alignment between speech and transcript (Graves et al.,
2006), which has been widely used to train ASR models,
including ASR pretraining for ST. It also contributes to
non-autoregressive translation. Libovický & Helcl (2018)
and Saharia et al. (2020) applied the CTC loss to non-
autoregressive MT and obtained improved translation perfor-
mance. Gu & Kong (2021) observed that CTC is essential

to achieve fully or one-step non-autoregressive MT. In ad-
dition, Chuang et al. (2021) showed that CTC enhances
the reordering behavior of non-autoregressive ST. Different
from these studies, we apply CTC to improve autoregressive
ST, although Haviv et al. (2021) showed that CTC helps
autoregressive MT little.

There are several pioneering studies trying to relax the
heuristics in acoustic features to improve speech representa-
tion. Sainath et al. (2013) and Seki et al. (2017) explored
a neural filter bank layers as an alternative to the hand-
engineered filterbanks. Hoshen et al. (2015) proposed a
convolutional neural acoustic model that operates directly
on raw waveforms, aiming at capturing the fine-grained
time structure. Lam et al. (2021) further proposed a glob-
ally attentive locally recurrent network, gaining quality and
robustness for ASR. These studies mainly focus on ASR.
To the best of our knowledge, applying NAFM to ST has
never been investigated before, and we demonstrated its
feasibility.

8. Conclusion and Discussion
Is pretraining a necessity to E2E ST? We answer this ques-
tion by reexamining several techniques and devising two
novel proposals, namely parameterized distance penalty
(PDP) and neural acoustic feature modeling (NAFM), for
ST from scratch. Via extensive experiments, we present a
set of best practices for ST from scratch, including smaller
vocabulary, deep post-LN encoder, wider feed-forward layer,
ST-based CTC regularization and PDP. We show that ST
models trained from scratch, when properly optimized, can
match and even outperform previous work relying on pre-
training, thus challenging its necessity.

Our study does not preclude pretraining for ST. Instead,
we provide an improved understanding of its role on E2E
ST. Our results show that pretraining matters mainly in
two settings: (extremely) low-resource setup and scenarios
where large-scale external ASR and MT data is available.
The performance gap in such settings remains. From our
perspective, how to leverage other types of data to improve
pretraining for ST is a promising yet challenging research
topic. We invite researchers to build upon our models to
re-examine the importance of pretraining in various settings.

In addition, we examined and demonstrated the feasibility
of performing E2E ST on raw waveforms through NAFM.
Although we did not obtain consistent and substantial qual-
ity gains, NAFM still has the potential of fully leveraging all
acoustic signals and yielding improved acoustic features for
ST, achieving better results with more suitable architectures.

Page 81 of 85



European Live Translator
D3.2: Report 2 on Spoken Language Translation

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Revisiting End-to-End Speech-to-Text Translation From Scratch

References
Anastasopoulos, A. and Chiang, D. Tied multitask learn-

ing for neural speech translation. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers),
pp. 82–91, New Orleans, Louisiana, June 2018. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/N18-1008. URL https://www.aclweb.org/
anthology/N18-1008.

Anastasopoulos, A., Bojar, O., Bremerman, J., Cattoni, R.,
Elbayad, M., Federico, M., Ma, X., Nakamura, S., Ne-
gri, M., Niehues, J., Pino, J., Salesky, E., Stüker, S.,
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